

Autotest Documentation

Autotest is a framework for fully automated testing. It is designed
primarily to test the Linux kernel, though it is useful for many other
purposes such as qualifying new hardware, virtualization testing and
other general user space program testing under linux platforms. It’s an
open-source project under the GPL and is used and developed by a number
of organizations, including Google, IBM, Red Hat, and many others.

Please check Avocado, a next generation test automation framework being
developed by several of the original Autotest team members:
http://avocado-framework.github.io/

	Autotest Documentation
	General Information

	Local (Former Client)

	Remote (Former Server)

	Frontend

	System Administration

	Scheduler

	Developer

	client Package
	autotest_local Module

	base_sysinfo Module

	base_utils Module

	bkr_proxy Module

	bkr_xml Module

	client_logging_config Module

	cmdparser Module

	common Module

	config Module

	cpuset Module

	fsdev_disks Module

	fsdev_mgr Module

	fsinfo Module

	harness Module

	harness_autoserv Module

	harness_beaker Module

	harness_simple Module

	harness_standalone Module

	job Module

	kernel Module

	kernel_config Module

	kernel_versions Module

	kernelexpand Module

	kvm_control Module

	local_host Module

	lv_utils Module

	optparser Module

	os_dep Module

	parallel Module

	partition Module

	profiler Module

	setup Module

	setup_job Module

	setup_modules Module

	sysinfo Module

	test Module

	test_config Module

	utils Module

	xen Module

	Subpackages

	frontend Package
	Subpackages

Indices and tables

	Index

	Module Index

	Search Page

Autotest Documentation

	General Information
	Contact information

	Who uses autotest?

	Autotest structure overview

	Autotest White Paper

	Autotest Development Community Size

	Local (Former Client)
	Autotest Client Quick Start

	Client Control files

	Control file specification

	Test modules development

	Adding tests to autotest

	Using and developing job profilers

	Linux distribution detection

	Quickly detecting the Linux distribution

	The unknown Linux distribution

	Writing a Linux distribution probe

	API Reference

	External downloadable tests

	Keyval files in Autotest

	Diagnosing failures in your results

	Remote (Former Server)
	Autotest Remote (Autoserv)

	Autotest Server Quick Start

	Autoserv Client Install

	Autotest server interaction with clients

	Writing server-side control files

	The Host classes

	Synchronize clients in multi machine (server) tests

	Autoserv message logging specification

	Conmux - Console Multiplexor

	Installing a Conmux Server

	Conmux - Original Documentation

	ACL Behavior Reference

	Frontend
	Autotest Command Line Interface

	Access Control List Management - autotest-rpc-client acl

	Host Management - autotest-rpc-client host

	Job Management - autotest-rpc-client job

	Label Management - autotest-rpc-client label

	Test Management - autotest-rpc-client test

	User Management - autotest-rpc-client user

	Frontend Database (autotest_web)

	Understanding the TKO Results Database

	TKO results database

	MySQL replication

	RPC Server

	Web Frontend HOWTO

	Web Frontend Roadmap

	Configuring hosts on the Autotest server

	Setting a Graphing Filter

	Preconfigured Graphing Queries

	Using the Metrics Plot Frontend

	Metrics Preconfigs

	Machine Qualification Preconfigs

	TKO Web Interface Requirements

	Autotest Reporting API

	Autotest Web Frontend Implementation details

	Host Protection Levels

	Specifying kernels in the Job Creation Interface

	Using the Machine Qualification Histogram Frontend

	Existing Graphing Scripts Frontend

	System Administration
	Installing an Autotest server (Ubuntu/Debian version)

	Installing an Autotest server (Red Hat version)

	Autotest Server Install - Set up MySQL

	Autotest Server/Scheduler/WebUI Install script

	Autotest Server Troubleshooting

	Setting up an Autotest Drone (Results Server)

	System Administration Tips and Tricks

	Virt Test specific configuration

	Important server configuration for virt-test

	Update virt test config files

	Analyze virt job execution results

	Setting up a distributed Autotest production environment

	Using the autotest package management with autoserv

	Scheduler
	Scheduler specification

	Job and Host Statuses

	Advanced Job Scheduling

	Autotest Scheduler Roadmap

	General Overview

	TKO parse documentation

	Developer
	Downloading the Source

	Autotest’s Directory Structure

	Autotest Code Submission Check List

	How to use git to contribute patches to autotest

	Life cycle of an idea in autotest

	Workflow Details

	Topic Issues

	Topic Issue States

	Pull Requests

	Pull Request Updates

	Mail List Publishing

	Autotest Test API

	Submission common problems

	Autotest requirements

	Autotest Design Goals

	Autotest Maintenance Docs

	Global Configuration

	Adding site-specific extensions

	Autotest status file specification

	Autotest job results specification

	Documentation

	Autotest Unittest suite

	Web Frontend Development

	Using the Autotest Mock Library for unit testing

General Information

	Contact information

	Who uses autotest?

	Autotest structure overview

	Autotest White Paper

	Autotest Development Community Size

This section has assorted information and some past, informative presentations
and articles about autotest architecture and goals, such as
This article on autotest by John Admanski and
This presentation from OLS 2009.

Contact information

	Autotest mailing list [http://www.redhat.com/mailman/listinfo/autotest-kernel]

	Autotest IRC channel: irc.oftc.net #autotest

Who uses autotest?

An active community of users is fundamental to sustain an open source project.
Currently, there are quite a few projects that use autotest as their main test
automation platform:

	Fedora’s AutoQA [https://fedorahosted.org/autoqa/]

	Chrome OS [http://www.chromium.org/chromium-os/testing/autotest-developer-faq]

	KVM kernel based virtual machine [http://www.linux-kvm.org/page/KVM-Autotest]

	Goobuntu (internal customized version of ubuntu for google)

Besides these projects, other people from several different companies/affiliations
use autotest for their test automation needs.

Autotest structure overview

This document intends to be a high level overview of the autotest
project structure. We try to be brief and show the high level diagrams.

Simplified block diagram

For the sake of clarity, some things are simplified here, but it gives
you a good idea of the overall layout.

[image: ../../_images/block_structure.png]

Web interface and command line interface

The web interface and the command line interface are complementary ways
to interact with autotest and create jobs. Both were designed to have
the same functionality, to add to the user’s convenience. The interfaces
allows you to:

	Manage jobs? - create, monitor, abort, etc.

	Manage client hosts

	Look at results.

The frontends will inject jobs into the server by creating records in a
mysql database.

Server

The server consists of three main parts:

	A mysql database that holds information on all jobs, clients (test
machines), users and tests.

	The dispatcher (monitor_db) - chooses the jobs from the database to
run. It’s input is the database, pretty much all it does is start
autoserv processes to service requests.
	There is normally one dispatcher process per machine

	Client side jobs are run asyncronously (as client machines become
available)

	Server side jobs are run syncronously (ie we wait for all clients
before commencing)

	Autoserv: the server manages clients via autoserv processes - there
will be one autoserv process per running job?. Each autoserv process:
	controls and monitors one or more clients

	verifies clients are working properly, and if it fails
verification, attempts to repair it

	manages the execution of a job?

	updates the autotest software on each client before commencing
work.

The mysql database can live on a different machine than the dispatcher.
There can be multiple dispatchers to spread the workload, though each
can service a few thousand clients, so this is not normally necessary.

Client

The client does most of the work of running a job?; this can be invoked:

	manually - from client/autotest-local <control_file_name>

	via the server

A typical job workflow is as follows:

[image: ../../_images/job_flow.png]

Results repository

A directory tree of all the results. Each job has a well formatted
directory structure

Results MySQL DB

A simple mysql database containing the jobs, test results, and
performance metrics for each test

Overall structure

With all the parts of the code briefly commented, it’s easier to
understand the overall structure diagram:

[image: ../../_images/overall_structure.png]

Autotest White Paper

Abstract

This paper describes the motivation for, and design goals of, the
autotest and test.kernel.org projects. Autotest is a framework for fully
automated testing, that is designed primarily to test the Linux kernel,
though is useful for many other functions too. Test.kernel.org is a
framework for communicating, sharing, and analysing test results.

In a traditional corporate systems software development environment,
there is normally a large test team responsible for assuring the quality
of the final product. Open source projects do not have that luxury, and
we need to find another way to run testing. We feel that the only
realistic way to achieve the goal is to fully automate the test process,
and drastically reduce the need for human staffing. It turns out that
this also solves several other critical problems with testing.

	Consistency - it’s much easier to guarantee the tests are run the
same way as last time.

	Knowledge capture - the knowledge of how to run testing is not held
in one person, but within a system.

	Sharing - you can easily share tests with vendors, partners, and
across a wide community.

	Reproducibility - they say 90% of fixing a bug is to get an easily
reproducible test case.

Testing is not about running tests ... testing is about finding and
fixing bugs. We have to:

	Run the tests

	Find a bug

	Classify the bug

	Hand the bugs off to a developer

	Developer investigates bug (cyclical)

	Developer tests some proposed fix (cyclical)

	Fix checked in

	New release issued to test team.

So many test systems I see are oriented only around the first two (or
even one!) steps. This is massively inefficient - so often I see
developers writing a simple testcase to reproduce what happens in a more
complex test, or proprietary application, and then these are thrown
away. If we started with open tests that we could freely and easily
share, much effort and time would be saved. This is not just about the
cost of the people’s time, salaries and machine resources. It’s about
the opportunity cost of stalling a release, which is massively greater -
these problems are often single-threading the critical path.

We want bug identification, investigation, and fixing to be done earlier
in the cycle. This allows multiple debugging efforts to be done in
parallel, without affecting others, as well as many other advantages,
such as the problem still being fresh in the developers mind, and not
interacting with other later changes. This means running tests on
multiple codebases (development trees), with high frequency - how can we
scale to this? Fully automated testing. Machines are cheap, people are
expensive - this is the reality of the modern age. For Linux, the
problem is compounded by the staggering diversity of hardware and kernel
configurations that we support.

Moreover, a test system is not just about simple functional tests; we
should also identify performance regressions and trends, adding
statistical analysis. A broad spectrum of tests are necessary – boot
testing, regression, function, performance, and stress testing; from
disk intensive to compute intensive to network intensive loads. A fully
automated test harness also empowers other techniques that are
impractical when testing manually, in order to make debugging and
problem identification easier, e.g. automated binary chop search amongst
thousands of patches to weed out dysfunctional changes.

It’s critical that when operating in an open community, we can share and
compare test results - that necessitates consistency of results formats.
The easiest way to achieve this is to share one common test harness.

Introduction

It is critical for any project to maintain a high level of software
quality, and consistent interfaces to other software that it uses or
uses it. There are several methods for increasing quality, but none of
these works in isolation, we need a combination of:

	skilled developers carefully developing high quality code,

	static code analysis,

	regular and rigorous code review,

	functional tests for new features,

	regression testing,

	performance testing, and

	stress testing.

Whilst testing will never catch all bugs, it will improve the overall
quality of the finished product. Improved code quality results in a
better experience not only for users, but also for developers, allowing
them to focus on their own code. Even simple compile errors hinder
developers.

In this paper we will look at the problem of automated testing, the
current state of it, and our views for its future. Then we will take a
case study of the test.kernel.org automated test system. We will examine
a key test component, the client harness, in more detail, and describe
the Autotest test harness project. Finally we will conclude with our
vision of the future and a summary.

Automated Testing

It is obvious that testing is critical, what is perhaps not so obvious
is the utility of regular testing at all stages of development. There
are two main things we’re trying to achieve here, parallelism of work,
and catching the bugs as quickly as possible. These are critical as:

	it prevents replication of the bad code into other code bases,

	fewer users are exposed to the bug,

	the code is still fresh in the authors mind,

	the change is less likely to interact with subsequent changes, and

	the code is easy to remove should that be required.

In a perfect world all contributions would be widely tested before being
applied; however, as most developers do not have access to a large range
of hardware this is impractical. More reasonably we want to ensure that
any code change is tested before being introduced into the mainline
tree, and fixed or removed before most people will ever see it. In the
case of Linux, Andrew Morton’s -mm tree (the de facto development tree)
and other subsystem specific trees are good testing grounds for this
purpose.

Test early, test often!

The open source development model and Linux in particular introduces
some particular challenges. Open-source projects generally suffer from
the lack of a mandate to test submissions and the fact that there is no
easy funding model for regular testing. Linux is particularly hard hit
as it has a constantly high rate of change, compounded with the
staggering diversity of the hardware on which it runs. It is completely
infeasible to do this kind of testing without extensive automation.

There is hope; machine-power is significantly cheaper than man-power in
the general case. Given a large quantity of testers with diverse
hardware it should be possible to cover a useful subset of the possible
combinations. Linux as a project has plenty of people and hardware; what
is needed is a framework to coordinate this effort.

The Testing Problem

[image: ../../_images/codeflow.png]

As we can see from the diagram above Linux’s development model forms an
hourglass starting highly distributed, with contributions being
concentrated in maintainer trees before merging into the development
releases (the -mm tree) and then into mainline itself. It is vital to
catch problems here in the neck of the hourglass, before they spread out
to the distros – even once a contribution hits mainline it is has not
yet reached the general user population, most of whom are running distro
kernels which often lag mainline by many months.

In the Linux development model, each actual change is usually small and
attribution for each change is known making it easy to track the author
once a problem is identified. It is clear that the earlier in the
process we can identify there is a problem, the less the impact the
change will have, and the more targeted we can be in reporting and
fixing the problem.

Whilst contributing untested code is discouraged we cannot expect lone
developers to be able to do much more than basic functional testing,
they are unlikely to have access to a wide range of systems. As a
result, there is an opportunity for others to run a variety of tests on
incoming changes before they are widely distributed. Where problems are
identified and flagged, the community has been effective at getting the
change rejected or corrected.

By making it easier to test code, we can encourage developers to run the
tests before ever submitting the patch; currently such early testing is
often not extensive or rigorous, where it is performed at all. Much
developer effort is being wasted on bugs that are found later in the
cycle when it is significantly less efficient to fix them.

The State of the Union

It is clear that a significant amount of testing resource is being
applied by a variety of parties, however most of the current testing
effort goes on after the code has forked from mainline. The distribution
vendors test the code that they integrate into their releases, hardware
vendors are testing alpha or beta releases of those distros with their
hardware. Independent Software Vendors (ISVs) are often even later in
the cycle, first testing beta or even after distro release. Whilst
integration testing is always valuable, this is far too late to be doing
primary testing, and makes it extremely difficult and inefficient to fix
problems that are found. Moreover, neither the tests that are run, nor
the results of this testing are easily shared and communicated to the
wider community.

There is currently a large delay between a mainline kernel releasing and
that kernel being accepted and released by the distros, embedded product
companies and other derivatives of Linux. If we can improve the code
quality of the mainline tree by putting more effort into testing
mainline earlier, it seems reasonable to assume that those `customers’
of Linux would update from the mainline tree more often. This will
result in less time being wasted porting changes backwards and forwards
between releases, and a more efficient and tightly integrated Linux
community.

What Should we be Doing?

Linux’s constant evolutionary approach to software development fits well
with a wide-ranging, high-frequency regression testing regime. The
`release early, release often’ development philosophy provides us with
a constant stream of test candidates; for example the -git snapshots
which are produced twice daily, and Andrew Morton’s collecting of the
specialized maintainer trees into a bleeding-edge -mm development tree.

In an ideal world we would be regression testing at least daily
snapshots of all development trees, the -mm tree and mainline on all
possible combinations of hardware; feeding the results back to the
owners of the trees and the authors of the changes. This would enable
problems to be identified as early as possible in the concentration
process and get the offending change updated or rejected. The
test.kernel.org testing project provides a preview of what is possible,
providing some limited testing of the mainline and development trees,
and is discussed more fully later.

Just running the tests is not sufficient, all this does is produce large
swaths of data for humans to wade through; we need to analyse the
results to engender meaning, and isolate any problems identified.

Regression tests are relatively easy to analyse, they generate a clean
pass or fail; however, even these can fail intermittently. Performance
tests are harder to analyse, a result of 10 has no particular meaning
without a baseline to compare it against. Moreover, performance tests
are not 100% consistent, so taking a single sample is not sufficient, we
need to capture a number of runs and do simple statistical analysis on
the results in order to determine if any differences are statistically
significant or not. It is also critically important to try to
distinguish failures of the machine or harness from failures of the code
under test.

Case Study: test.kernel.org

We have tried to take the first steps towards the automated testing
goals we have outlined above with the testing system that generates the
test.kernel.org website. Whilst it is still far from what we would like
to achieve, it is a good example of what can be produced utilising time
on an existing in house system sharing and testing harness and a shared
results repository.

New kernel releases are picked up automatically within a few minutes of
release, and a predefined set of tests are run across them by a
proprietary IBM® system called ABAT, which includes a client harness
called autobench. The results of these tests are then collated, and
pushed to the TKO server, where they are analysed and the results
published on the TKO website.

Whilst all of the test code is not currently open, the results of the
testing are, which provides a valuable service to the community,
indicating (at least at a gross level) a feel for the viability of that
release across a range of existing machines, and the identification of
some specific problems. Feedback is in the order of hours from release
to results publication.

How it Works

[image: ../../_images/tko.png]

The TKO system is architected as show in the figure above. Its is made
up of a number of distinct parts, each described below:

The mirror / trigger engine: test execution is keyed from kernel
releases; by any -mm tree release (2.6.16-rc1-mm1), git release
(2.6.17-rc1-git10), release candidate (2.6.17-rc1), stable release
(2.6.16) or stable patch release (2.6.16.1). A simple rsync local mirror
is leveraged to obtain these images as soon as they are available. At
the completion of the mirroring process any newly downloaded image is
identified and those which represent new kernels trigger testing of that
image.

Server Job Queues: for each new kernel, a predefined set of test jobs
are created in the server job queues. These are interspersed with other
user jobs, and are run when time is available on the test machines.
IBM’s ABAT server software currently fulfils this function, but a simple
queueing system could serve for the needs of this project.

Client Harness: when the test system is available, the control file for
that test is passed to the client harness. This is responsible for
setting up the machine with appropriate kernel version, running the
tests, and pushing the results to a local repository. Currently this
function is served by autobench. It is here that our efforts are
currently focused with the Autotest client replacement project which we
will discuss in detail later.

Results Collation: results from relevant jobs are gathered
asynchronously as the tests complete and they are pushed out to
test.kernel.org. A reasonably sized subset of the result data is pushed,
mostly this involves stripping the kernel binaries and system
information dumps.

Results Analysis: once uploaded the results analysis engine runs over
all existing jobs and extracts the relevant status; this is then
summarised on a per release basis to produce both overall red, amber and
green status for each release/machine combination. Performance data is
also analysed, in order to produce historical performance graphs for a
selection of benchmarks.

Results Publication: results are made available automatically on the TKO
web site. However, this is currently a `polled’ model; no automatic
action is taken in the face of either test failures or if performance
regressions are detected, it relies on developers to monitor the site.
These failures should be actively pushed back to the community via an
appropriate publication mechanism (such as email, with links back to
more detailed data).

Observed problems: When a problem (functional or performance) is
observed by a developer monitoring the analysed and published results,
this is manually communicated back to the development community
(normally via email). This often results in additional patches to test,
which can be manually injected into the job queues via a simple script,
but currently only by an IBM engineer. These then automatically flow
through with the regular releases, right through to publication on the
matrix and performance graphs allowing comparison with those releases.

TKO in Action

The regular compile and boot testing frequently shakes out bugs as the
patch that carried them enters the -mm tree. By testing multiple
architectures, physical configurations, and kernel configurations we
often catch untested combinations and are able to report them to the
patch author. Most often these are compile failures, or boot failures,
but several performance regressions have also been identified.

[image: ../../_images/kernbench-moe.png]

As a direct example, recently the performance of highly parallel
workloads dropped off significantly on some types of systems,
specifically with the -mm tree. This was clearly indicated by a drop off
in the kernbench performance figures. In the graph above we can see the
sudden increase in elapsed time to a new plateau with 2.6.14-rc2-mm1.
Note the vertical error bars for each data point – doing multiple test
runs inside the same job allows us to calculate error margins, and
clearly display them.

Once the problem was identified some further analysis narrowed the bug
to a small number of scheduler patches which were then also tested;
these appear as the blue line (`other’ releases) in the graph. Once the
regression was identified the patch owner was then contacted, several
iterations of updated fixes were then produced and tested before a
corrected patch was applied. This can be seen in the figures for
2.6.16-rc1-mm4.

The key thing to note here is that the regression never made it to the
mainline kernel let alone into a released distro kernel; user exposure
was prevented. Early testing ensured that the developer was still
available and retained context on the change.

Summary

The current system is providing regular and useful testing feedback on
new releases and providing ongoing trend analysis against historical
releases. It is providing the results of this testing in a public
framework available to all developers with a reasonable turn round time
from release. It is also helping developers by testing on rarer hardware
combinations to which they have no access and cannot test.

However, the system is not without its problems. The underlying tests
are run on a in-house testing framework (ABAT) which is currently not in
the public domain; this prevents easy transport of these tests to other
testers. As a result there is only one contributor to the result set at
this time, IBM. Whilst the whole stack needs to be made open, we explain
in the next section why we have chosen to start first with the client
test harness.

The tests themselves are very limited, covering a subset of the kernel.
They are run on a small number of machines, each with a few, fixed
configurations. There are more tests which should be run but lack of
developer input and lack of hardware resources on which to test prevent
significant expansion.

The results analysis also does not communicate data back as effectively
as it could to the community – problems (especially performance
regressions) are not as clearly isolated as they could be, and
notification is not as prompt and clear as it could be. More data
`folding’ needs to be done as we analyse across a multi-dimensional
space of kernel version, kernel configuration, machine type, toolchain,
and tests.

Client Harnesses

As we have seen, any system which will provide the required level of
testing needs to form a highly distributed system, and be able to run
across a large test system base. This will necessitate a highly flexible
client test harness; a key component of such a system. We have used our
experiences with the IBM autobench client, and the TKO analysis system
to define requirements for such a client. This section will discuss
client harnesses in general and lead on to a discussion of the Autotest
project’s new test harness.

We chose to attack the problem of the client harness first as it seems
to be the most pressing issue. With this solved, we can share not only
results, but the tests themselves more easily, and empower a wide range
of individuals and corporations to run tests easily, and share the
results. By defining a consistent results format, we can enable
automated collation and analysis of huge amounts of data.

Requirements / Design Goals

A viable client harness must be operable stand-alone or under an
external scheduler infrastructure. Corporations already have significant
resources invested in bespoke testing harnesses which they are not going
to be willing to waste; the client needs to be able to plug into those,
and timeshare resources with them. On the other hand, some testers and
developers will have a single machine and want something simple they can
install and use. This bimodal flexibility is particularly relevant where
we want to be able to pass a failing test back to a patch author, and
have them reproduce the problem.

The client harness must be modular, with a clean internal infrastructure
with simple, well defined APIs. It is critical that there is clear
separation between tests, and between tests and the core, such that
adding a new test cannot break existing tests.

The client must be simple to use for newcomers, and yet provide a
powerful syntax for complex testing if necessary. Tests across multiple
machines, rebooting, loops, and parallelism all need to be supported.

We want distributed scalable maintainership, the core being maintained
by a core team and the tests by the contributors. It must be able to
reuse the effort that has gone into developing existing tests, by
providing a simple way to encapsulate them. Whilst open tests are
obviously superior, we also need to allow the running of proprietary
tests which cannot be contributed to the central repository.

There must be a low knowledge barrier to entry for development, in order
to encourage a wide variety of new developers to start contributing. In
particular, we desire it to be easy to write new tests and profilers,
abstracting the complexity into the core as much as possible.

We require a high level of maintainability. We want a consistent
language throughout, one which is powerful and yet easy to understand
when returning to the code later, not only by the author, but also by
other developers.

The client must be robust, and produce consistent results. Error
handling is critical – tests that do not produce reliable results are
useless. Developers will never add sufficient error checking into
scripts, we must have a system which fails on any error unless you take
affirmative action. Where possible it should isolate hardware or harness
failures from failures of the code under test; if something goes wrong
in initialisation or during a test we need to know and reject that test
result.

Finally, we want a consistent results architecture – it is no use to
run thousands of tests if we cannot understand or parse the results. On
such a scale such analysis must be fully automatable. Any results
structure needs to be consistent across tests and across machines, even
if the tests are being run by a wide diversity of testers.

What Tests are Needed?

As we mentioned previously, the current published automated testing is
very limited in its scope. We need very broad testing coverage if we are
going to catch a high proportion of problems before they reach the user
population, and need those tests to be freely sharable to maximise test
coverage.

Most of the current testing is performed in order to verify that the
machine and OS stack is fit for a particular workload. The real workload
is often difficult to set up, may require proprietary software, and is
overly complex and does not give sufficiently consistent reproducible
results, so use is made of a simplified simulation of that workload
encapsulated within a test. This has the advantage of allowing these
simulated workloads to be shared. We need tests in all of the areas
below:

Build tests simply check that the kernel will build. Given the massive
diversity of different architectures to build for, different
configuration options to build for, and different toolchains to build
with, this is an extensive problem. We need to check for warnings, as
well as errors.

Static verification tests run static analysis across the code with tools
like sparse, lint, and the Stanford checker, in the hope of finding bugs
in the code without having to actually execute it.

Inbuilt debugging options (e.g. CONFIG_DEBUG_PAGEALLOC,
CONFIG_DEBUG_SLAB) and fault insertion routines (e.g. fail every 100th
memory allocation, fake a disk error occasionally) offer the opportunity
to allow the kernel to test itself. These need to be a separated set of
test runs from the normal functional and performance tests, though they
may reuse the same tests.

Functional or unit tests are designed to exercise one specific piece of
functionality. They are used to test that piece in isolation to ensure
it meets some specification for its expected operation. Examples of this
kind of test include LTP and Crashme.

Performance tests verify the relative performance of a particular
workload on a specific system. They are used to produce comparisons
between tests to either identify performance changes, or confirm none is
present. Examples of these include: CPU performance with Kernbench and
AIM7/reaim; disk performance with bonnie, tbench and iobench; and
network performance with netperf.

Stress tests are used to identify system behaviour when pushed to the
very limits of its capabilities. For example a kernel compile executed
completely in parallel creates a compile process for each file. Examples
of this kind of test include kernbench (configured appropriately), and
deliberately running under heavy memory pressure such as running with a
small physical memory.

Profiling and debugging is another key area. If we can identify a
performance regression, or some types of functional regression, it is
important for us to be able to gather data about what the system was
doing at the time in order to diagnose it. Profilers range from
statistical tools like readprofile and lockmeter to monitoring tools
like vmstat and sar. Debug tools might range from dumping out small
pieces of information to full blown crashdumps.

Existing Client Harnesses

There are a number of pre-existing test harnesses in use by testers in
the community. Each has its features and problems, we touch on a few of
them below.

IBM autobench is a fairly fully featured client harness, it is
completely written in a combination of shell and perl. It has support
for tests containing kernel builds and system boots. However, error
handling is very complex and must be explicitly added in all cases, but
does encapsulate the success or failure state of the test. The use of
multiple different languages may have been very efficient for the
original author, but greatly increases the maintenance overheads. Whilst
it does support running multiple tests in parallel, loops within the job
control file are not supported nor is any complex `programming’.

OSDL STP The Open Systems Development Lab (OSDL) has the Scalable Test
Platform (STP). This is a fully integrated testing environment with both
a server harness and client wrapper. The client wrapper here is very
simple consisting of a number of shell support functions. Support for
reboot is minimal and kernel installation is not part of the client.
There is no inbuilt handling of the meaning of results. Error checking
is down to the test writer; as this is shell it needs to be explicit
else no checking is performed. It can operate in isolation and results
are emailable, reboot is currently being added.

LTP (http://ltp.sourceforge.net/) The
Linux Test Project is a functional / regression test suite. It contains
approximately 2900 small regression tests which are applied to the
system running LTP. There is no support for building kernels or booting
them, performance testing or profiling. Whilst it contains a lot of
useful tests, it is not a general heavy weight testing client.

A number of other testing environments currently exist, most appear to
suffer from the same basic issues, they evolved from the simplest
possible interface (a script) into a test suite; they were not designed
to meet the level of requirements we have identified and specified.

All of those we have reviewed seem to have a number of key failings.
Firstly, most lack most lack bottom up error handling. Where support
exists it must be handled explicitly, testers never will think of
everything. Secondly, most lack consistent machine parsable results.
There is often no consistent way to tell if a test passes, let alone get
any details from it. Lastly, due to their evolved nature they are not
easy to understand nor to maintain. Fortunately it should be reasonably
easy to wrap tests such as LTP, or to port tests from STP and autobench.

Autotest - a Powerful Open Client

The Autotest open client is an attempt to address the issues we have
identified. The aim is to produce a client which is open source,
implicitly handles errors, produces consistent results, is easily
installable, simple to maintain and runs either standalone or within any
server harness.

Autotest is an all new client harness implementation. It is completely
written in Python; chosen for a number of reasons, it has a simple,
clean and consistent syntax, it is object oriented from inception, and
it has very powerful error and exception handling. Whist no language is
perfect, it meets the key design goals well, and it is open source and
widely supported.

As we have already indicated, there are a number of existing client
harnesses; some are even open-source and therefore a possible basis for
a new client. Starting from scratch is a bold step, but we believe that
the benefits from a designed approach outweigh the effort required
initially to get to a workable position. Moreover, much of the existing
collection of tests can easily be imported or wrapped.

Another key goal is the portability of the tests and the results; we
want to be able to run tests anywhere and to contribute those test
results back. The use of a common programming language, one with a
strict syntax and semantics should make the harness and its contained
tests very portable. Good design of the harness and results
specifications should help to maintain portable results.

The autotest Test Harness

Autotest utilises an executable control file to represent and drives the
users job. This control file is an executable fragment of Python and may
contain any valid Python constructs, allowing the simple representation
of loops and conditionals. Surrounding this control file is the Autotest
harness, which is a set of support functions and classes to simplify
execution of tests and allow control over the job.

The key component is the job object which represents the executing job,
provides access to the test environment, and provides the framework to
the job. It is responsible for the creation of the results directory,
for ensuring the job output is recorded, and for any interactions with
any server harness. Below is a trivial example of a control file:

job.runtest('test1', 'kernbench', 2, 5)

One key benefit of the use of a real programming language is the ability
to use the full range of its control structures in the example below we
use an iterator:

for i in range(0, 5):
 job.runtest('test%d' % i, 'kernbench',
 2, 5)

Obviously as we are interested in testing Linux, support for building,
installing and booting kernels is key. When using this feature, we need
a little added complexity to cope with the interruption to control flow
caused by the system reboot. This is handled using a phase stepper which
maintains flow across execution interruptions, below is an example of
such a job, combining booting with iteration:

def step_init():
 step_test(1)

def step_test(iteration):
 if (iteration < 5):
 job.next_step([step_test,
 iteration + 1])

 print "boot: %d" % iteration

 kernel = job.distro_kernel()
 kernel.boot()

Tests are represented by the test object; each test added to Autotest
will be a subclass of this. This allows all tests to share behaviour,
such as creating a consistent location and layout for the results, and
recording the result of the test in a computer readable form. Below is
the class definition for the kernbench benchmark. As we can see it is a
subclass of test, and as such benefits from its management of the
results directory hierarchy.

import test
from autotest_utils import *

class kernbench(test):

 def setup(self,
 iterations = 1,
 threads = 2 * count_cpus(),
 kernelver = '/usr/local/src/linux-2.6.14.tar.bz2',
 config = os.environ['AUTODIRBIN'] + "/tests/kernbench/config"):

 print "kernbench -j %d -i %d -c %s -k %s" % (threads, iterations, config, kernelver)

 self.iterations = iterations
 self.threads = threads
 self.kernelver = kernelver
 self.config = config

 top_dir = job.tmpdir+'/kernbench'
 kernel = job.kernel(top_dir, kernelver)
 kernel.config([config])

 def execute(self):
 testkernel.build_timed(threads) # warmup run
 for i in range(1, iterations+1):
 testkernel.build_timed(threads, '../log/time.%d' % i)

 os.chdir(top_dir + '/log')
 system("grep elapsed time.* > time")

Summary

We feel that Autotest is much more powerful and robust design than the
other client harnesses available, and will produce more consistent
results. Adding tests and profilers is simple, with a low barrier to
entry, and they are easy to understand and maintain.

Much of the power and flexibility of Autotest stems from the decision to
have a user-defined control file, and for that file to be written in a
powerful scripting language. Whilst this was more difficult to
implement, the interface the user sees is still simple. If the user
wishes to repeat tests, run tests in parallel for stress, or even write
a bisection search for a problem inside the control file, that is easy
to do.

The Autotest client can be used either as standalone, or easily linked
into any scheduling backend, from a simple queueing system to a huge
corporate scheduling and allocation engine. This allows us to leverage
the resources of larger players, and yet easily allow individual
developers to reproduce and debug problems that were found in the lab of
a large corporation.

Each test is a self-contained modular package. Users are strongly
encouraged to create open-source tests (or wrap existing tests) and
contribute those to the main test repository on test.kernel.org (see the
Autotest wiki for details). However, private tests and repositories are
also allowed, for maximum flexibility. The modularity of the tests means
that different maintainers can own and maintain each test, separate from
the core harness. We feel this is critical to the flexibility and
scalability of the project.

We currently plan to support the Autotest client across the range of
architectures and across the main distros. There is no plans to support
other operating systems, as it would add unnecessary complexity to the
project. The Autotest project is released under the GNU Public License.

Future

We need a broader spectrum of tests added to the Autotest project.
Whilst the initial goal is to replace autobench for the published data
on test.kernel.org, this is only a first step – there are a much wider
range of tests that could and should be run. There is a wide body of
tests already available that could be wrapped and corralled under the
Autotest client.

We need to encourage multiple different entities to contribute and share
testing data for maximum effect. This has been stalled waiting on the
Autotest project, which is now nearing release, so that we can have a
consistent data format to share and analyse. There will be problems to
tackle with quality and consistency of data that comes from a wide range
of sources.

Better analysis of the test results is needed. Whilst the simple
red/yellow/green grid on test.kernel.org and simple gnuplot graphs are
surprisingly effective for so little effort, much more could be done. As
we run more tests, it will become increasingly important to summarise
and fold the data in different ways in order to make it digestible and
useful.

Testing cannot be an island unto itself – not only must we identify
problems, we must communicate those problems effectively and efficiently
back to the development community, provide them with more information
upon request, and be able to help test attempted fixes. We must also
track issues identified to closure.

There is great potential to automate beyond just identifying a problem.
An intelligent automation system should be able to further narrow down
the problem to an individual patch (by bisection search, for example,
which is O(log2) number of patches). It could drill down into a problem
by running more detailed sets of performance tests, or repeating a
failed test several times to see if a failure was intermittent or
consistent. Tests could be selected automatically based on the area of
code the patch touches, correlated with known code coverage data for
particular tests.

Summary

We are both kernel developers, who started the both test.kernel.org and
Autotest projects out of a frustration with the current tools available
for testing, and for fully automated testing in particular. We are now
seeing a wider range of individuals and corporations showing interest in
both the test.kernel.org and Autotest projects, and have high hopes for
their future.

In short we need:

	more automated testing, run at frequent intervals,

	those results need to be published consistently and cohesively,

	to analyse the results carefully,

	better tests, and to share them, and

	a powerful, open source, test harness that is easy to add tests to.

There are several important areas where interested people can help
contribute to the project:

	run a diversity of tests across a broad range of hardware,

	contribute those results back to test.kernel.org,

	write new tests and profilers, contribute those back, and

	for the kernel developers ... fix the bugs!!!

An intelligent system can not only improve code quality, but also free
developers to do more creative work.

Acknowledgements

We would like to thank OSU for the donation of the server and disk space
which supports the test.kernel.org site.

We would like to thank Mel Gorman for his input to and review of drafts
of this paper.

Autotest Development Community Size

After re-consideration about the subject, in
April 2012 we have rewritten the entire autotest
tree history. Autotest was a project kept on svn
for about 6 years, and for a long time there was
an unofficial git-svn mirror, that after we adopted
git as the official reference, we just kept that
mirror.

Obviously this does not play well with the
traditional tools to verify stats on git, so
that’s why we decided to rewrite. Now you can see
the individual authors that contributed since the
inception of the project:

$ git shortlog -s | wc -l
202

And all other fun git statistics, such as the number
of organizations that contributed resources to some
extent to the project

$ git shortlog -se | sed -e 's/.*@//g' -e 's/\W*$//g' | sort | uniq | grep -v "<"
alien8.de
amd.com
b1-systems.de
br.ibm.com
canonical.com
chromium.org
cn.fujitsu.com
cn.ibm.com
digium.com
gelato.unsw.edu.au
gmail.com
google.com
hp.com
ifup.org
inf.u-szeged.hu
in.ibm.com
intel.com
intra2net.com
kerlabs.com
linux.vnet.ibm.com
mvista.com
nokia.com
openvz.org
oracle.com
osdl.org
oss.ntt.co.jp
place.org
raisama.net
redhat.com
samba.org
secretlab.ca
shadowen.org
stanford.edu
stec-inc.com
suse.com
suse.cz
suse.de
twitter.com
uk.ibm.com
us.ibm.com
windriver.com
xenotime.net

As not all of them are strictly institutions, and there are different
domains from the same root company, we can estimate about 30 institutions.

Have fun with your git stats, enjoy!

Local (Former Client)

	Autotest Client Quick Start

	Client Control files
	Simple Jobs

	External tests

	Flow control

	System information collection

	Using the profilers facility

	Creating filesystems

	Rebooting during a job

	Running multiple tests in parallel

	Control file specification
	Naming your control files

	Variables

	Example

	Test modules development

	Adding tests to autotest
	setup

	run_once

	postprocess_iteration

	Additional test methods

	Adding your own test

	Using and developing job profilers
	Setup

	Initialize

	Start

	Stop

	Report

	Adding your own profiler

	Linux distribution detection

	Quickly detecting the Linux distribution

	The unknown Linux distribution

	Writing a Linux distribution probe
	Checking the distrution name only

	Checking the distribution name and version numbers

	Probe Scores

	Registering your own probes

	API Reference
	LinuxDistro

	Probe

	register_probe()

	detect()

	External downloadable tests
	Executing Tests

	Constructing external downloadable tests

	Keyval files in Autotest
	Job level keyval

	Test level keyval

	Results level keyval

	Diagnosing failures in your results
	Basics

	Looking at raw results

	The debug directory

	The sysinfo directory

	Manually running a job on a machine that is causing problems

Autotest Client Quick Start

The autotest client has few requirements.
Make sure you have python 2.4 or later installed. Also, it is a
good idea to try things in a VM or test machine you don’t care
about, for safety.

Download the client wherever you see fit:

git clone --recursive git://github.com/autotest/autotest.git
cd autotest

Run some simple tests, such our sleeptest, which only sleeps for a given
amount of seconds (our favorite autotest sanity testing). From the autotest directory
(i.e. /usr/local/autotest/client):

client/autotest-local --verbose run sleeptest

To run any individual test:

client/autotest-local run <testname>

You can also run tests by providing the control file

client/autotest-local client/tests/sleeptest/control

Some tests may require that you run them as root. For example, if you try to run the rtc test as normal user, you will get /dev/rtc0: Permission denied error in your test result. So you must run the test as root.

In case you run the client as root, then switch back to a regular
user, some important directories will be owned by root and the next
run will fail. If that happens, you can remove the directories:

sudo rm -rf client/tmp
sudo rm -rf client/results

There are sample control files inside the client/samples directory,
useful for learning from. The kbuild_and_tests/control file in
there will download a kernel, compile it, then reboot the machine
into it.

Execute it as root:

client/autotest-local --verbose client/samples/kbuild_and_tests/control

WARNING - do it on a test machine, or in a VM, so you don’t mess
up your existing system boot configuration

Client Control files

The key defining component of a job is its control file; this file
defines all aspects of a jobs life cycle. The control file is a Python
script which directly drives execution of the tests in question.

Simple Jobs

You are automatically supplied with a job object which drives the job
and supplies services to the control file. A control file can be as
simple as:

job.run_test('kernbench')

The only mandatory argument is the name of the test. There are lots of
examples; each test has a sample control file under
tests/<testname>/control

If you’re sitting in the top level of the Autotest client, you can run
the control file like this:

$ client/autotest-local <control_file_name>

You can also supply specific arguments to the test

job.run_test('kernbench', iterations=2, threads=5)

	First paramater is the test name.

	The others are arguments to the test. Most tests will run with no
arguments if you want the defaults.

If you would like to specify a tag for the results directory for a
particular test:

job.run_test('kernbench', iterations=2, threads=5, tag='mine')

Will create a results directory “kernbench.mine” instead of the default
“kernbench”. This is particularly important when writing more complex
control files that may run the same test multiple times, in order to
properly separate the results of each of the test runs they will need a
unique tag.

External tests

Sometimes when you are developing a test it’s useful to have it packaged
somewhere so your control file can download it, uncompress it and run
it. The convention for packaging test is on
External Tests. Make sure you read that session
before you try to package and run your own external tests.

Flow control

One of the benefits of the use of a true programming language for the
control script is the ability to use all of its structural and error
checking features. Here we use a loop to run kernbench with different
threading levels.

for t in [8, 16, 32]:
 job.run_test('kernbench', iterations=2, threads=t, tag='%d' % t)

System information collection

After every reboot and after every test, Autotest will collect a variety
of standard pieces of system information made up of specific files
grabbed from the filesystem (e.g. /proc/meminfo) and the output of
various commands (e.g.``uname -a``). You can see this output in the
results directories, under sysinfo/ (for per-reboot data) and
<testname>/sysinfo (for pre-test data).

For a full list of what’s collected by default you can take a look at
client/bin/base_sysinfo.py; however, there also exists a mechanism for
adding extra files and commands to the system info collection inside
your control files. To add a custom file to the log collection you can
call:

job.add_sysinfo_file("/proc/vmstat")

This would collect the contents of /proc/vmstat after every reboot. To
collect it on every test you can use the optional on_every_test
parameter, like so:

job.add_sysinfo_file("/proc/vmstat", on_every_test=True)

There exists a similar method for adding a new command to the sysinfo
collection:

job.add_sysinfo_command("lspci -v", logfile="lspci.txt")

This will run lspci -v through the shell on every reboot, logging the
output in lspci.txt. The logfile parameter is optional; if you do not
specify it, the logfile will default to the command text with all
whitespace replaced with underscores (e.g. in this case it would use
lspci_ -v as the filename). This method also takes an on_every_test
parameter that can be used to run the collection after every test
instead of every reboot.

Using the profilers facility

You can enable one or more profilers to run during the test. Simply add
them before the tests, and remove them afterwards, e.g.:

job.profilers.add('oprofile')
job.run_test('sleeptest')
job.profilers.delete('oprofile')

If you run multiple tests like this:

job.profilers.add('oprofile')
job.run_test('kernbench')
job.run_test('dbench')
job.profilers.delete('oprofile')

It will create separate profiling output for each test - generally we do
a separate profiling run inside each test, so as not to perturb the
performance results. Profiling output will appear under
<testname>/profiling in the results directory.

Again, there are examples for all profilers in
profilers/<profiler-name>/control.

Creating filesystems

We have support built in for creating filesystems. Suppose you wanted to
run the fsx test against a few different filesystems:

Uncomment this line, and replace the device with something sensible
for you ...
fs = job.filesystem('/dev/hda2', job.tmpdir)

for fstype in ('ext2', 'ext3'):
 fs.mkfs(fstype)
 fs.mount()
 try:
 job.run_test('fsx', job.tmpdir, tag=fstype)
 finally:
 fs.unmount()

or if we want to show off and get really fancy, we could mount EXT3 with
a bunch of different options, and see how the performance compares
across them:

fs = job.filesystem('/dev/sda3', job.tmpdir)

iters=10

for fstype, mountopts, tag in (('ext2', '', 'ext2'),
 ('ext3', '-o data=writeback', 'ext3writeback'),
 ('ext3', '-o data=ordered', 'ext3ordered'),
 ('ext3', '-o data=journal', 'ext3journal')):
 fs.mkfs(fstype)
 fs.mount(args=mountopts)
 try:
 job.run_test('fsx', job.tmpdir, tag=tag)
 job.run_test('iozone', job.tmpdir, iterations=iters, tag=tag)
 job.run_test('dbench', iterations=iters, dir=job.tmpdir, tag=tag)
 job.run_test('tiobench', dir=job.tmpdir, tag=tag)
 finally:
 fs.unmount()

Rebooting during a job

Where a job needs to cause a system reboot such as when booting a newly
built kernel, there is necessarily an interuption to the control script
execution. The job harness therefore also provides a phased or step
based interaction model.

def step_init():
 job.next_step([step_test])
 testkernel = job.kernel('2.6.18')
 testkernel.config('http://mbligh.org/config/opteron2')
 testkernel.build()
 testkernel.boot() # does autotest by default

def step_test():
 job.run_test('kernbench', iterations=2, threads=5)
 job.run_test('dbench', iterations=5)

By defining a step_init this control script has indicated it is
using step mode. This triggers automatic management of the step state
across breaks in execution (such as a reboot) maintaining forward flow.

It is important to note that the step engine is not meant to work from
the scope of the tests, that is, inside a test module (job.run_test(), from
the control file perspective). The reboots and step engine are only meant
to be used from the control file level, since a lot of precautions are
taken when running test code, such as shielding autotest from rogue exceptions
thrown during test code, as well as executing test code on a subprocess, where
it is less likely to break autotest and we can kill that subprocess if it
reaches a timeout.

So this code inside a control file is correct:

def step_init():
 job.next_step([step_test])
 testkernel = job.kernel('testkernel.rpm')
 testkernel.install()
 testkernel.boot()

def step_test():
 job.run_test('ltp')

This code, inside a test module, isn’t:

class kerneltest(test.test):
 def execute(self):
 testkernel = job.kernel('testkernel.rpm')
 testkernel.boot()

In broad brush, when using the step engine, the control file is not simply
executed once, but repeatedly executed until it indicates the job is complete.
In a stand-alone context we would expect to re-start execution automatically
on boot when a control file exists, in a managed environment the
managing server would perform the same role.

Obviously looping is more difficult in the face of phase based
execution. The state maintained by the stepping engine is such, that we
can implement a boot based loop using step parameters.

def step_init():
 step_test(1)

def step_test(iteration):
 if (iteration < 5):
 job.next_step([step_test, iteration + 1])

 print "boot: %d" % iteration

 job.run_test('kernbench', tag="%d" % i)
 job.reboot()

Running multiple tests in parallel

The job object also provides a parallel method for running multiple
tasks at the same time. The method takes a variable number of arguments,
each representing a different task to be run in parallel. Each argument
should be a list, where the first item on the list is a function to be
called and all the remaining elements are arguments that will be passed
to the function when it is called.

def first_task():
 job.run_test('kernbench')

def second_task():
 job.run_test('dbench')

job.parallel([first_task], [second_task])

This control file will run both kernbench and dbench at the same time.
Alternatively, this could’ve been written as:

job.parallel([job.run_test, 'kernbench'], [job.run_test, 'dbench'])

However, if you want to so something more complex in your tasks than
call a single function then you’ll have to define your own functions to
do it, as in the first example.

The parallel jobs are run through fork, so each task will be running in
its own address space and you don’t need to worry about performing any
process-local synchronization between your separate tasks. However,
these processes will still be running on the same machine and so still
need to make certain that these tasks don’t crash into each other while
accessing shared resources (e.g. the filesystem). This means no
rebooting during parallel tasks, and if you’re running the same test in
different tasks, you must be sure to give each task a unique tag

Control file specification

This document will go over what is required to be in a control file for
it to be accepted into git. The goal of this is to have control files
that contain all necessary information for the frontend/the user to
ascertain what the test does and in what ways it can be modified.

Naming your control files

Control files should always start with control.XXXXX, where XXXXX is up to you
and the code reviewer, the idea is for it to be short sweet and
descriptive. For example, for 500 iterations of hard reboot test a decent
name would be control.hard500.

Variables

An overview of variables that should be considered required in any control file submitted to our repo.

	Name
	Description

	* AUTHOR
	Contact information for the person or group that wrote the test

	DEPENDENCIES
	What the test requires to run. Comma deliminated list e.g. ‘CONSOLE’

	* DOC
	Description of the test including what arguments can be passed to it

	EXPERIMENTAL
	If this is set to True production servers will ignore the test

	* NAME
	The name of the test for the frontend

	RUN_VERIFY
	Whether or not the scheduler should run the verify stage, default True

	SYNC_COUNT
	Accepts a number >=1 (1 being the default)

	* TIME
	How long the test runs SHORT < 15m, MEDIUM < 4 hours, LONG > 4 hour

	TEST_CLASS
	This describes the class for your the test belongs in. e.g. Kernel, Hardware

	TEST_CATEGORY
	This describes the category for your tests e.g. Stress, Functional

	* TEST_TYPE
	What type of test: client, server

* Are required for test to be considered valid

If you’d like to verify that your control file defines these variables
correctly, try the utils/check_control_file_vars.py utility.

AUTHOR (Required)

The name of either a group or a person who will be able to answer questions pertaining to the test should the
development team not be able to fix bugs. With email address included

DEPENDENCIES (Optional, default: None)

Dependencies are a way to describe what type of hardware you need to find to run a test on. Dependencies are
just a fancy way of saying if this machine has this label on it then it is eligible for this test.

An example usecase for this would be if you need to run a test on a device that has bluetooth you would add
the following to your control file:

DEPENDENCY = "Bluetooth"

Where Bluetooth is the exact label that was created in Autotest and has been added to a machine in
Autotest either via the CLI or the Django admin interface.

DOC (Required)

The doc string should be fairly verbose describing what is required for the test to be run successfully and
any modifications that can be done to the test. Any arguments in your def execute() that can change the
behavior of the test need to be listed here with their defaults and a description of what they do.

EXPERIMENTAL (Optional, default: False)

If this field is set the test import process for the frontend will ignore these tests for production
Autotest servers. This is useful for gettings tests checked in and tested in development servers
without having to worry about them sneaking into production servers.

NAME (Required)

The name that the frontend will display, this is useful when you have multiple control files for the same
test but with slight variations.

RUN_VERIFY (Optional, default: True)

It is used to have the scheduler not run verify on a particular job when it is scheduling it.

SYNC_COUNT (Optional, default: 1)

It accepts a number >=1 (1 being the default). If it’s 1, then it’s a async test. If it’s >1 it’s sync.

For example, if I have a test that requires exactly two machines SYNC_COUNT = 2. The scheduler will
then find the maximum amount of machines from the job submitted that will run that fit the SYNC_COUNT
evenly.

For example, if I submit a job with 23 machines, 22 machines will run the test in that job and
one will fail to run becase it doesn’t have a pair.

TIME (Required)

How long the test generally takes to run. This does not include the autotest setup time but just your
individual test’s time.

	TIME
	Description

	SHORT
	Test runs for a maximum of 15 minutes

	MEDIUM
	Test runs for less four hours

	LONG
	Test runs for longer four hours

TEST_CATEGORY (Required)

This is used to define the category your tests are a part of.

Examples of categories:

	Functional

	Stress

TEST_CLASS (Required)

This****describes the class type of tests. This is useful if you have different different types of tests you
want to filter on. If a test is added with a TEST_CLASS that does not exist the frontend should add that class.

Example tests classes

	Kernel

	Hardware

TEST_TYPE (Required)

This will tell the frontend what type of test it is. Valid values are server and client.
Although server_async jobs are also a type of job in correlation with SYNC_COUNT this is taken care of.

Example

TIME ='MEDIUM'
AUTHOR = 'Scott Zawalski (scott@xxx.com)'
TEST_CLASS = 'Hardware'
TEST_CATEGORY = 'Functional'
NAME = 'Hard Reboot'
SYNC_COUNT = 1
TEST_TYPE = 'server'
TEST_CLASS = 'Hardware'
DEPENDCIES = 'POWER, CONSOLE'

DOC = """
Tests the reliability of platforms when rebooted. This test allows
you to do a hard reboot or a software reboot.

Args:
type: can be "soft" or "hard", default is "hard"
e.g. job.run_test('reboot', machine, type="soft")
This control file does a HARD reboot
"""

def run(machine):
job.run_test('reboot', machine, type="hard")
parallel_simple(run, machines)

Test modules development

Tests should be self-contained modular units, encompassing everything
needed to run the test (apart from calls back into the core harness)

Tests should:

	Run across multiple hardware architectures

	Run on multiple distros

	Have a maintainer

	Provide simple examples for default running

	Not modify anything outside of their own directories, or provided
scratch areas.

Adding tests to autotest

Adding a test is probably the easiest development activity to do.

Each test is completely contained in it’s own subdirectory (either in
client/tests for client-side tests or server/tests for server-side
tests) - the normal components are

	An example control file,e.g. tests/mytest/control.

	A test wrapper, e.g. tests/mytest/mytest.py.

	Some source code for the test, if it’s not all done in just the Python script.

Start by taking a look over an existing test, e.g. tests/dbench. First,
note that the name of the subdirectory - tests/dbench, the test wrapper -
dbench.py and the name of the class inside the test wrapper - dbench,
all match. Make sure you do this in your new test too.

The control file is trivial:

job.run_test('dbench')

That just takes the default arguments to run dbench - mostly, we try to
provide sensible default settings to get you up and running easily, then
you can override most things later.

There’s a tarball for the source code - dbench-3.04.tar.gz - this will
get extracted under src/ later. Most of what you’re going to have to do
is in the Python wrapper. Look at dbench.py - you’ll see it inherits
from the main test class, and defines a version (more on that later).
You’ll see four functions:

	initialize() - This is run before everything, every time the test is
run.

	setup() - This is run when you first use the test, and normally is
used to compile the source code.

	run_once() - This is called by job.run_test N times, where N is
controlled by the iterations parameter to run_test (defaulting to
one). It also gets called an additional time with profilers turned
on, if you have any profilers enabled.

	postprocess_iteration() - This processes any results generated by
the test iteration, and writes them out into a keyval. It’s generally
not called for the profiling iteration, as that may have different
performance.

The test will result in a PASS, unless you throw an exception, in which
case it will FAIL (error.TestFail?), WARN (error.TestWarn?) or ERROR
(anything else). Most things that go wrong in Python will throw an
exception for you, so you don’t normally have to worry about this much -
you can check extra things and throw an exception if you need. Now let’s
look at those functions in some more detail.

setup

This is the one-off setup function for this test. It won’t run again
unless you change the version number (so be sure to bump that if you
change the source code). In this case it’ll extract dbench-3.04.tar.gz
into src/, and compile it for us. Look at the first few lines:

http://samba.org/ftp/tridge/dbench/dbench-3.04.tar.gz
def setup(self, tarball='dbench-3.04.tar.gz'):
 tarball = utils.unmap_url(self.bindir, tarball, self.tmpdir)

A comment saying where we got the source from. The function header -
defines what the default tarball to use for the source code is (you can
override this with a different dbench version from the control file if
you wanted to, but that’s highly unusual). Lastly there’s some magic
with unmap_url - that’s just incase you overrode it with a url - it’ll
download it for you, and return the local path ... just copy that bit.

utils.extract_tarball_to_dir(tarball, self.srcdir)
os.chdir(self.srcdir)
utils.system('./configure')
utils.system('make')

OK, so this just extracts the tarball into self.srcdir (pre-setup for
you to be src/ under the test), cd’s into that src dir, and runs
./configure; make just as you would for most standard compilations.

Note

We use the local system() wrapper, not os.system() - this will

automatically throw an exception if the return code isn’t 0, etc.

Apart from compiling a package from the source,you have an option to
use the client system’s software manager to install a package using
the software_manager module.

Here is how you do it:

from autotest.client.shared import software_manager
backend=software_manager.SoftwareManager()
backend.install('<package_name>')

That’s all!

run_once

This actually executes the test. The core of what it’s doing is just:

self.results.append(utils.system_output(cmd))

Which says “run dbench and add the output to self.results”. We need to
record the output so that we can process it after the test runs in
postprocess.

postprocess_iteration

For performance benchmarks, we want to produce a keyval file of
key=value pairs, describing how well the benchmark ran. The key is
just a string, and the value is a floating point or integer number.
For dbench, we produce just two performance metrics - “throughput” and
“nprocs”. The function is called once per iteration (except for the
optional profiling iteration), and we end up with a file that looks like
this:

throughput = 217
nprocs = 4

throughput = 220
nprocs = 4

throughput = 215
nprocs = 4

Note that the above was from a run with three iterations - we ran the
benchmark 3 times, and thus print three sets of results. Each set is
separated by a blank line.

Additional test methods

These methods aren’t implemented in the dbench test, but they can be
implemented if you need to take advantage of them.

warmup

For performance tests that need to conduct any pre-test priming to make
the results valid. This is called by job.run_test before running the
test itself, but after all the setup.

cleanup

Used for any post-test cleanup. If test may have left the machine in a
broken state, or your initialize made a large mess (e.g. used up most of
the disk space creating test files) that could cause problems with
subsequent tests then it’s probably a good idea to write a cleanup that
undoes this. It always gets called, regardless of the success or failure
of the test execution.

execute

Used for executing the test, by calling warmup, run_once and
postprocess. The base test class provides an implementation that already
supports profilers and multiple test iterations, but if you need to
change this behavior you can override the default implementation with
your own.

Note

If you want to properly support multi-iteration tests and/or profiling

runs, you must provide that support yourself in your custom execute implementation.

Adding your own test

Now just create a new subdirectory under tests, and add your own control
file, source code, and wrapper. It’s probably easiest to just copy
dbench.py to mytest.py, and edit it - remember to change the name of the
class at the top though.

If you have any problems, or questions, drop an email to the
Autotest mailing list [http://www.redhat.com/mailman/listinfo/autotest-kernel]),
and we’ll help you out.

Using and developing job profilers

Adding a profiler is much like adding a test. Each profiler is completely
contained in it’s own subdirectory (under client/profilers or
if you just checked out the client - under profilers/) - the normal
components are:

	An example control file, e.g. profilers/myprofiler/control.

	A profiler wrapper, e.g. profilers/myprofiler.py.

	Some source code for the profiler (if it’s not all done in just the
Python script)

Start by taking a look over an existing profiler. I’ll pick readprofile,
though it’s not the simplest one, as it shows all the things you might
need. Be aware this one will only work if you have readprofile support
compiled into the kernel.

The control file is trivial, just

job.profilers.add('readprofile')
job.run_test('sleeptest', 1)
job.profilers.delete('readprofile')

That just says “please use readprofile for the following tests”. You can
call profilers.add multiple times if you want multiple profilers at
once. Then we generally just use sleeptest to do a touch test of
profilers - it just sleeps for N seconds (1 in this case).

There’s a tarball for the source code - util-linux-2.12r.tar.bz2 - this
will get extracted under src/ later. Most of what you’re going to have
to do is in the python wrapper. Look at readprofile.py - you’ll see it
inherits from the main profiler class, and defines a version (more on
that later). You’ll see several functions:

	setup() - This is run when you first use the profiler, and normally is used to compile the source code.

	intialize() - This is run whenever you import the profiler.

	start() - Starts profiling.

	stop() - Stops profiling.

	report() - Run a report on the profiler data.

Now let’s look at those functions in some more detail.

Setup

This is the one-off setup function for this test. It won’t run again unless you change the version number
(so be sure to bump that if you change the source code). In this case it’ll extract
util-linux-2.12r.tar.bz2 into src/, and compile it for us. Look at the first few lines:

http://www.kernel.org/pub/linux/utils/util-linux/util-linux-2.12r.tar.bz2
def setup(self, tarball = 'util-linux-2.12r.tar.bz2'):
 self.tarball = unmap_url(self.bindir, tarball, self.tmpdir)
 extract_tarball_to_dir(self.tarball, self.srcdir)

A comment saying where we got the source from. The function header - defines what the default tarball to
use for the source code is (you can override this with a different version from the control file if you
wanted to, but that’s highly unusual). Lastly there’s some magic with unmap_url - that’s just incase
you overrode it with a URL - it’ll download it for you, and return the local path just copy that bit.

os.chdir(self.srcdir)
system('./configure')
os.chdir('sys-utils')
system('make readprofile')

OK, so this just extracts the tarball into self.srcdir (pre-setup for you to be src/ under the profiler),
cd’s into that src dir, and runs ./configure and then just makes the readprofile component
(util-linux also contains a bunch of other stuff we don’t need) - just as you would for most standard
compilations. Note that we use the local system() wrapper, not os.system() - this will automatically
throw an exception if the return code isn’t 0, etc.

Initialize

def initialize(self):
 try:
 system('grep -iq " profile=" /proc/cmdline')
 except:
 raise CmdError, 'readprofile not enabled'

 self.cmd = self.srcdir + '/sys-utils/readprofile'

This runs whenever we import this profiler - it just checks that readprofile is enabled,
else it won’t work properly.

Start

def start(self, test):
 system(self.cmd + ' -r')

Start the profiler! Just run readprofile -r.

Stop

def stop(self, test):
 # There's no real way to stop readprofile, so we stash the
 # raw data at this point instead. BAD EXAMPLE TO COPY! ;-)
 self.rawprofile = test.profdir + '/profile.raw'
 print "STOP"
 shutil.copyfile('/proc/profile', self.rawprofile)

Normally you’d just run readprofile --stop, except this profiler doesn’t seem to have that.
We want to do the lightest-weight thing possible, in case there are multiple profilers running,
and we don’t want them to interfere with each other.

Report

def report(self, test):
 args = ' -n'
 args += ' -m ' + get_systemmap()
 args += ' -p ' + self.rawprofile
 cmd = self.cmd + ' ' + args
 txtprofile = test.profdir + '/profile.text'
 system(cmd + ' | sort -nr > ' + txtprofile)
 system('bzip2 ' + self.rawprofile)

This just converts it into text. We need to find this kernel’s System.map etc (for which there’s a helper),
and then produce the results in a useful form (in this case, a text file).
Note that we’re passed the test object, so we can store the results under the profiling/
subdirectory of the test’s output by using the test.profdir which has been set up automatically for you.

Adding your own profiler

Now just create a new subdirectory under profilers, and add your own control file, source code, and wrapper.
It’s probably easiest to just copy readprofile.py to mytest.py, and edit it - remember to change the
name of the class at the top though.

If you have any problems, or questions, drop an email to the
Autotest mailing list [http://www.redhat.com/mailman/listinfo/autotest-kernel], and we’ll help you out.

Linux distribution detection

Autotest has a facility that lets tests determine quite precisely the distribution they’re running on.

This is done through the implementation and registration of probe classes.

Those probe classes can check for given characteristics of the running operating system, such as the existence of a release file,
its contents or even the existence of a binary that is exclusive to a distribution (such as package managers).

Quickly detecting the Linux distribution

The autotest.client.shared.distro module provides many APIs, but the simplest one to use is the detect().

Its usage is quite straighforward:

from autotest.client.shared import distro
detected_distro = distro.detect()

The returned distro can be the result of a probe validating the distribution detection, or the not so useful
UNKNOWN_DISTRO.

To access the relevant data on a LinuxDistro, simply use the attributes:

	name

	version

	release

	arch

Example:

>>> detected_distro = distro.detect()
>>> print detected_distro.name
redhat

The unknown Linux distribution

When the detection mechanism can’t precily detect the Linux distribution, it will still return a LinuxDistro instance,
but a special one that contains special values for its name, version, etc.

	
autotest.client.shared.distro.UNKNOWN_DISTRO = <LinuxDistro: name=unknown, version=0, release=0, arch=unknown>

	The distribution that is used when the exact one could not be found

Writing a Linux distribution probe

The easiest way to write a probe for your target Linux distribution is to make use of the features of the Probe class.

Even if you do plan to use the features documented here, keep in mind that all probes should inherit from Probe
and provide a basic interface.

Checking the distrution name only

The most trivial probe is one that checks the existence of a file and returns the distribution name:

class RedHatProbe(Probe):
 CHECK_FILE = '/etc/redhat-release'
 CHECK_FILE_DISTRO_NAME = 'redhat'

To make use of a probe, it’s necessary to register it:

from autotest.client.shared import distro
distro.register_probe(RedHatProbe)

And that’s it. This is a valid example, but will give you nothing but the distro name.

You should usually aim for more information, such as the version numbers.

Checking the distribution name and version numbers

If you want to also detect the distro version numbers (and you should), then it’s possible to use the
Probe.CHECK_VERSION_REGEX feature of the Probe class.

	
Probe.CHECK_VERSION_REGEX = None

	A regular expresion that will be run on the file pointed to by
CHECK_FILE_EXISTS

If your regex has two or more groups, that is, it will look for and save references to two or more string, it will consider
the second group to be the LinuxDistro.release number.

Probe Scores

To increase the accuracy of the probe results, it’s possible to register a score for a probe. If a probe wants to, it can
register a score for itself.

Probes that return a score will be given priority over probes that don’t.

The score should be based on the number of checks that ran during the probe to account for its accuracy.

Probes should not be given a higher score because their checks look more precise than everyone else’s.

Registering your own probes

Not only the probes that ship with Autotest can be used, but your custom probe classes can be added to the detection system.

To do that simply call the function register_probe():

	
autotest.client.shared.distro.register_probe(probe_class)

	Register a probe to be run during autodetection

Now, remember that for things to happen smootlhy your registered probe must be a subclass of Probe.

API Reference

LinuxDistro

	
class autotest.client.shared.distro.LinuxDistro(name, version, release, arch)

	Simple collection of information for a Linux Distribution

Probe

	
class autotest.client.shared.distro.Probe

	Probes the machine and does it best to confirm it’s the right distro

	
CHECK_FILE = None

	Points to a file that can determine if this machine is running a given
Linux Distribution. This servers a first check that enables the extra
checks to carry on.

	
CHECK_FILE_CONTAINS = None

	Sets the content that should be checked on the file pointed to by
CHECK_FILE_EXISTS. Leave it set to None (its default)
to check only if the file exists, and not check its contents

	
CHECK_FILE_DISTRO_NAME = None

	The name of the Linux Distribution to be returned if the file defined
by CHECK_FILE_EXISTS exist.

	
CHECK_VERSION_REGEX = None

	A regular expresion that will be run on the file pointed to by
CHECK_FILE_EXISTS

	
check_name_for_file()

	Checks if this class will look for a file and return a distro

The conditions that must be true include the file that identifies the
distro file being set (CHECK_FILE) and the name of the
distro to be returned (CHECK_FILE_DISTRO_NAME)

	
check_name_for_file_contains()

	Checks if this class will look for text on a file and return a distro

The conditions that must be true include the file that identifies the
distro file being set (CHECK_FILE), the text to look for
inside the distro file (CHECK_FILE_CONTAINS) and the name
of the distro to be returned (CHECK_FILE_DISTRO_NAME)

	
check_release()

	Checks if this has the conditions met to look for the release number

	
check_version()

	Checks if this class will look for a regex in file and return a distro

	
get_distro()

	Returns the LinuxDistro this probe detected

	
name_for_file()

	Get the distro name if the CHECK_FILE is set and exists

	
name_for_file_contains()

	Get the distro if the CHECK_FILE is set and has content

	
release()

	Returns the release of the distro

	
version()

	Returns the version of the distro

register_probe()

	
autotest.client.shared.distro.register_probe(probe_class)

	Register a probe to be run during autodetection

detect()

	
autotest.client.shared.distro.detect()

	Attempts to detect the Linux Distribution running on this machine

	Returns:	the detected LinuxDistro or UNKNOWN_DISTRO

	Return type:	LinuxDistro

External downloadable tests

As well as executing built-in tests it is possible to execute external tests. This allows non-standard tests to be constructed
and executed without any requirement to modify the installed Autotest client.

Executing Tests

A downloadable test is triggered and run in the standard way via the run_test method, but specifying a URL to a tarball of
the test:

job.run_test('http://www.example.com/~someone/somewhere/test.tar.bz2')

This will download, install, and execute the test as if it were built-in.

Constructing external downloadable tests

External downloadable tests consist of a bzip’ed tarball of the contents of a test directory. Things that need to match:

	The name of the tarball, i.g. my_test.tar.bz2

	The name of the primary Python file, i.g. my_test.py

	The name of the test class itself, i.e. class my_test(test.test):

Example:

$ cat example_test/my_test.py
from autotest_lib.client.bin import test

class my_test(test.test):
 version = 1

 def initialize(self):
 print "INIT"

 def run_once(self):
 print "RUN"

$ tar -C example_test -jcvf my_test.tar.bz2 .
./
./my_test.py

Note

You should not pack “example_test” directory but the contents of it. Files must be at the root of the archive.

Keyval files in Autotest

There are several “keyval” files in the results directory. These take the simple form

key1=value1
key2=value2

Below we describe what information is in which file.

Job level keyval

This file contains high level information about the job such as when it was queued, started, finished, the username
of the submitter, and what machines are involved.

Synchronous multi-machine jobs

When running a multi-machine job synchronously, you will end up with multiple “job level” keyval files; at the very
least, one upper-level keyval file in the root results directory, and one in each machine subdirectory. In the results
database each machine will be interpreted as a separate set of results, with the total job keyval data being
composed of data from the “uppermost” of the keyval files (i.e. the single job level keyval in the root dir). The single
exception to this is the hostname field - this is taken from the machine directory.

Test level keyval

This file contains the version of the test, and some per-test system information (parsed from the sysinfo dir) so that
we can load it up into the database easily.

Results level keyval

This file contains performance information for a test. Maybe something like

throughput=100
latency=12

If we ran multiple iterations of a test, there will be repeteaed keyvals in there, separated by a blank line:

throughput=101
latency=12.9

throughput=100
latency=11.2

throughput=96
latency=13.1

Diagnosing failures in your results

This document will describe how to go about triaging your Autotest results and finding out what went wrong.

Basics

A lot of times when tests fail there are a number of things that could have come into play. Below are a few
things that should be considered.

	Baseline

	What changed between tests

	Look at the raw results

Having a baseline is an absolute must:

	Have you run these tests on this particular system before?

	Did it pass without any issues?

These are questions you should be asking yourself. If you do not have a baseline that is the first thing to establish.
It really is as simple as running a job and making note of the results.

A lot of the time that people have tests fail they do not consider what changed in between tests. Any change what so
ever is important to make note of. From something big like, did I change the kernel? To something small like did I
move my system to a different area which may have impacted the cooling of the system?

Lastly if nothing has changed and you have established a baseline for
your machines it is time to delve into the results.

Looking at raw results

There are a few key areas worth looking at when evaluating what could have went wrong with your job. From the
View Job tab click on raw results log. Here you will be presented with a directory structure that represents
your job flat files. If you created a job with multiple machines there will be individual directories for each machine.
Navigate to the machine you want to investigate.

The debug directory

All tests run including the main Autotest job will have a debug directory. Here you will find the majority of the
information you need to diagnose issues with tests.

The following files in debug directory will give you insight into what Autotest was doing at the time:

debug/
├── build_log.gz
├── client.DEBUG
├── client.ERROR
├── client.INFO
└── client.WARNING

If you have console support (via conmux) you should also take a look at conmux.log.

If at any point Autotest produced a stacktrace, *.ERROR will most likely contain this information. That is a
good place to start if the test run failed and you want to see if Autotest itself as at fault for the problem.

If both of these files are clean next we go to the <hostname>/test/ directory.

Example investigation

This example was created on host without time utility, I tried to launch kernbench (output reduced):

client/autotest-local --verbose run kernbench
10:01:59 INFO | Writing results to /usr/local/autotest/client/results/default
...
10:03:19 DEBUG| Running 'gzip -9 '/usr/local/autotest/client/results/default/kernbench/debug/build_log''
10:03:19 ERROR| Exception escaping from test:
Traceback (most recent call last):
 File "/usr/local/autotest/client/shared/test.py", line 398, in _exec
 *args, **dargs)
 File "/usr/local/autotest/client/shared/test.py", line 823, in _call_test_function
 return func(*args, **dargs)
 File "/usr/local/autotest/client/shared/test.py", line 738, in _cherry_pick_call
 return func(*p_args, **p_dargs)
 File "/usr/local/autotest/client/tests/kernbench/kernbench.py", line 53, in warmup
 self.kernel.build_timed(self.threads, output=logfile) # warmup run
 File "/usr/local/autotest/client/kernel.py", line 377, in build_timed
 utils.system(build_string)
 File "/usr/local/autotest/client/shared/utils.py", line 1232, in system
 verbose=verbose).exit_status
 File "/usr/local/autotest/client/shared/utils.py", line 918, in run
 "Command returned non-zero exit status")
CmdError: Command </usr/bin/time -o /dev/null make -j 4 vmlinux > /usr/local/autotest/client/results/default/kernbench/debug/build_log 2>&1> failed, rc=127, Command returned non-zero exit status
* Command:
/usr/bin/time -o /dev/null make -j 4 vmlinux >
/usr/local/autotest/client/results/default/kernbench/debug/build_log 2>&1
Exit status: 127
Duration: 0.00197100639343

Here we are investigating why kernbench failed. The first place we want to look at is the debug directory.
There we see the following files:

tree -s debug/
debug/
├── [79] build_log.gz
├── [1345] client.DEBUG
├── [0] client.ERROR
├── [511] client.INFO
└── [0] client.WARNING

As it failed during build phase I am going to look at build_log:

$ cat build_log
/bin/bash: /usr/bin/time: No such file or directory

Well, that is true as:

[user@a5 debug]# which time
/usr/bin/which: no time in (/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin:/root/bin)
[user@a5 debug]# ls /usr/bin/time
ls: cannot access /usr/bin/time: No such file or directory

In general test diagnoses should be that straight forward. Obvious this can not cover all cases.

The sysinfo directory

The sysinfo directory is exactly what it sounds like. A directory that contains as much information as possible that
can be gathered from the machine:

tree sysinfo/
sysinfo/
├── df
├── dmesg.gz
├── messages.gz
└── reboot_current -> ../../sysinfo

In general this directory is your second bet for finding issues. Most files are self explanatory, you should always examine
dmesg to make sure your boot was clean. Then depending on what test you were running that failed examine files that
will give you insight to that particular piece of hardware.

Manually running a job on a machine that is causing problems

A lot of times you will run into the case that all of your machines but two or three pass. While you may be able to figure
out why most of them failed by looking at files it is sometimes advantageous to run the Autotest process individually on
the problem machines.

Log-in to the machine and change to /home/autotest, there you will find the installation that the server put on this
particular system.

The last control file of the job that was run is also available to you - control.autoserv.

To start the job over again run the following:

[root@udc autotest]# bin/autotest control.autoserv

This is exactly how the autotest server starts jobs on client machines.

If you have a large control file that runs multiple tests and you are only interested in one or two of them you can safely
edit this file and remove any tests that you know work for sure. A lot of the time failures can be diagnosed by babysitting
a machine and seeing what else is going on with general diagnostic on a machine.

Remote (Former Server)

	Autotest Remote (Autoserv)
	Control Files

	Hosts

	InstallableObject

	Autotest Support

	Kernel Objects

	KVM Support

	Parallel commands

	Autotest Server Quick Start

	Autoserv Client Install

	Autotest server interaction with clients

	Writing server-side control files
	A basic control file

	Running some server-side tests

	Running some client-side tests

	Running other existing server control files

	Using more than one machine at once

	Synchronous vs Asynchronous jobs

	Installing kernels from a server-side control file

	The Host classes
	Creating instances of Host classes

	Custom hooks in create_host

	Paramiko vs OpenSSH

	Why openssh?

	So why paramiko?

	Setting up ParamikoHost

	Standard Methods

	Host.run

	Host.send_file, Host.get_file

	Host.reboot, Host.reboot_setup, Host.reboot_followup, Host.wait_up, Host.wait_down

	Synchronize clients in multi machine (server) tests
	class Barrier

	class SyncData

	Autoserv message logging specification

	Conmux - Console Multiplexor

	Installing a Conmux Server
	Installing the conmux server

	Building

	Console configuration

	Example Config

	Conmux configuration with hardreset

	Starting the Conmux Server

	Mock Console Setup using nc

	Conmux - Original Documentation
	Command Summary

	Architecture

	ACL Behavior Reference
	Hosts

	Jobs

	ACL Groups

	Superusers

Autotest Remote (Autoserv)

Autoserv is a framework for “automating machine control”

Autoserv’s purpose is to control machines, it can:

	power cycle

	install kernels

	modify bootloader entries

	run arbitrary commands

	run Autotest Local (client) tests

	transfer files

A machine can be:

	local

	remote (through ssh and conmux)

	virtual (through kvm)

Control Files

In a way similar to Autotest, Autoserv uses control files. Those control
files use different commands than the Autotest ones but like the
Autotest ones they are processed by the python interpreter so they
contain functions provided by Autoserv and can contain python
statements.

Here is an example control file that installs a .deb packaged kernel on
a remote host controlled through ssh. If this file is placed in the
server/ directory and named “example.control”, it can be
executed as ./autotest-remote example.control from within the server/
directory:

remote_host= hosts.SSHHost("192.168.1.1")

print remote_host.run("uname -a").stdout

kernel= deb_kernel.DEBKernel()
kernel.get("/var/local/linux-2.6.22.deb")

print kernel.get_version()
print kernel.get_image_name()
print kernel.get_initrd_name()

kernel.install(remote_host)

remote_host.reboot()

print remote_host.run("uname -a").stdout

Hosts

“Host” objects are the work horses of Autoserv control files. There are
Host objects for machines controlled through ssh, through conmux or
virtual machines. The structure of the code was planned so that support
for other types of hosts can be added if necessary. If you add support
for another type of host, make sure to add that host to the
server/hosts/__init__.py file.

Main Host Methods

Here are the most commonly used Host methods. Every type of host should
implement these and support at least the options listed. Specific hosts
may support more commands or more options. For information on these, see
the associated source file for the host type in the server/hosts/
subdirectory of Autotest. This listing is not a substitute for the
source code function headers of those files, it’s only a short summary.
In particular, have a look at the server/hosts/ssh_host.py file.

	run(command)

	reboot()

	get_file(source, dest)

	send_file(source, dest)

	get_tmp_dir()

	is_up()

	wait_up(timeout)

	wait_down(timeout)

	get_num_cpu()

CmdResult Objects

The return value from a run() call is a CmdResult object. This object
contains information about the command and its execution. It is defined
and its documentation is in the file server/hosts/base_classes.py.
CmdResult objects can be printed and they will output all their
information. Each field can also be accessed separately. The list of
fields is:

	command: String containing the command line itself

	exit_status: Integer exit code of the process

	stdout: String containing stdout of the process

	stderr: String containing stderr of the process

	duration: Elapsed wall clock time running the process

	aborted: Signal that caused the command to terminate (0 if none)

Main types of Host

SSHHost

SSHHost is probably the most common and most useful type of host. It
represents a remote machine controlled through an ssh session. It
supports all the base methods for
hosts and features a run() function
that supports timeouts. SSHHost uses ssh to run commands and scp to
transfer files.

In order to use an SSHHost the remote machine must be configured for
password-less login, for example through public key authentication. An
SSHHost object is built by specifying a host name and, optionally, a
user name and port number.

ConmuxSSHHost

ConmuxSSHHost is an extension of SSHHost. It is for machines that use
Conmux (HOWTO). These support hard reset through
the hardreset() method.

SiteHost

Site host is an empty class that is there to add site-specific methods
or attributes to all types of hosts. It is defined in the file
server/hosts/site_host.py but this file may be left empty, as it is,
or removed altogether. Things that come to mind for this class are
functions for flashing a BIOS, determining hardware versions or other
operations that are too specific to be of general use. Naturally,
control files that use these functions cannot really be distributed but
at least they can use the generic host types like SSHHost without
directly modifying those.

KVMGuest

KVMGuest represents a KVM virtual machine on which you can run programs.
It must be bound to another host, the machine that actually runs the
hypervisor. A KVMGuest is very similar to an SSHHost but it also
supports “hard reset” through the hardreset() method (implemented in
Guest) which commands the hypervisor to reset the guest. Please see the
KVM section for more information on KVM
and KVM guests.

LocalHost

Early versions of Autoserv represented the local machine (the one
Autoserv runs on) as part of the Host hierarchy. This is no longer the
case however because it was felt that some of the Host operations did
not make sense on the local machine (wait_down() for example).

Bootloader

Boottool is a Perl script to query and modify boot loader entries.
Autoserv provides the Bootloader class, a wrapper around boottool.
Autoserv copies the boottool script automatically to a temporary
directory the first time it is needed. Please see the
server/hosts/bootloader.py file for information on all supported
methods. The most important one is add_kernel().

When adding a kernel, boottool’s default behavior is to reuse the
command line of the first kernel entry already present in the bootloader
configuration and use it to deduce the options to specify for the new
entry.

InstallableObject

An InstallableObject represents a software package that can be
installed on a host. It is characterized by two methods:

	get(location)

	install(host)

get() is responsible for fetching the source material for the software
package. It can take many types of arguments as the location:

	a local file or directory

	a URL (http or ftp)

	a python file-like object

	if the argument doesn’t look like any of the above, get() will assume
that it is a string that represents the content itself

get() will store the content in a temporary folder on the host. This
way, it can be fetched once and installed on many hosts. install() will
install the software package on a host, typically in a temporary
directory.

Autotest Support

Autoserv includes specific support for Autotest. It can install Autotest
on a Host, run an Autotest control file and fetch the results back to
the server. This is done through the Autotest and Run classes in
server/autotest.py. The Autotest object is an InstallableObject. To
use it, you have to:

	specify the source material via get()
The Autotest object is special in this regard. If you do not specify
any source, it will use the Autotest svn repository to fetch the
software. This will be done on the target Host.

	install() it on a host
When installing itself, Autotest will look for a
/etc/autotest.conf file on the target host with a format similar
to the following:

autodir=/usr/local/autotest/

	run() a control file
The run() syntax is the following: run(control_file, results_dir,
host) The control_file argument supports the same types of value as
the get() method of InstallableObject (they use the same function
behind the scenes)

Here is an example Autoserv control file to run an Autotest job, the
results will be transfered to the “job_results” directory on the server
(the machine Autoserv is running on).

remote_host= hosts.SSHHost("192.168.1.1")

at= autotest.Autotest()
at.get("/var/local/autotest/client")
at.install(remote_host)

control_file= """
job.profilers.add("oprofile", events= ["CPU_CLK_UNHALTED:8000"])
job.run_test("linus_stress")
"""

results_dir= "job_results"

at.run(control_file, results_dir, remote_host)

Kernel Objects

Kernel objects are another type of InstallableObjects. Support is
planned for kernels compiled from source and binary kernels packaged as
.rpm and .deb. At the moment (Autotest revision 626), only .deb kernels
are implemented. Some support for kernels from source is already in
Autotest. Kernels support the following methods:

	
	get(location)

	customary InstallableObject method

	install(host, extra arguments to boottool)
When a kernel is installed on a host, it will use boottool to make
itself the default kernel to boot. If you want to specify additional
arguments, you can do so and they will be passed to the add_kernel()
method of the boot loader.

	get_version()

	get_image_name()

	get_initrd_name()

As always, see the source file function headers for complete details,
for example see the file server/deb_kernel.py

DEBKernels have an additional method, extract(host). This method will
extract the content the package to a temporary directory on the
specified Host. This is not a step of the install process, it is if you
want to access the content of the package without installing it. A
possible usage of that function is with kvm
and qemu’s -kernel option.

Here is an example Autoserv control file to install a kernel:

rh= hosts.SSHHost("192.168.1.1")

print rh.run("uname -a").stdout

kernel= deb_kernel.DEBKernel()
kernel.get("/var/local/linux-2.6.22.deb")

kernel.install(rh)

rh.reboot()

print rh.run("uname -a").stdout

A similar example using an RPM kernel and allowing the hosts to be
specified from the autoserv commandline
(autoserv -m host1,host2 install-rpm, for example):

if not machines:
 raise "Specify the machines to run on via the -m flag"

hosts = [hosts.SSHHost(h) for h in machines]

kernel = rpm_kernel.RPMKernel()
kernel.get('/stuff/kernels/kernel-smp-2.6.18.x86_64.rpm')

for host in hosts:
 print host.run("uname -a").stdout
 kernel.install(host, default=True)
 host.reboot()
 print host.run("uname -a").stdout

print "Done."

KVM Support

As stated previously, Autoserv supports controlling virtual machines.
The object model has been designed so that various types of “virtual
machine monitors”/hypervisors can be supported. At the moment (Autotest
revision 626), only KVM [http://www.linux-kvm.org/page/Main_Page] support is
included. In order to use KVM you must do the following:

	create a Host, this will be machine that runs the hypervisor

	create the KVM object, specify the source material for it via get(),
and install it on that host
The KVM InstallableObject is special in the sense that once it is
installed on a Host, it is bound to that Host. This is because some
status is maintained in the KVM object about the virtual machines
that are running.

	create KVMGuest objects, you have to specify, among other things, the
KVM object created above

	use the KVMGuest object like any other type of Host to run commands,
change kernel, run Autotest, ...

Please see the files server/kvm.py and server/hosts/kvm_guest.py
for more information on the parameters required, in particular, have a
look at the function headers of KVM.install() and the KVMGuest
constructor.

Here is an example Autoserv control file to do the above. Line 5
includes a list comprehension to create the required address
list, remember that the control
files are python.

remote_host= hosts.SSHHost("192.168.1.1")

kvm_on_remote_host= kvm.KVM(remote_host)
kvm_on_remote_host.get("/var/local/src/kvm-33.tar.gz")
addresses= [{"mac": "02:00:00:00:00:%02x" % (num,), "ip" : "192.168.2.%d" % (num,)} for num in range(1, 32)]
kvm_on_remote_host.install(addresses)

qemu_options= "-m 256 -hda /var/local/vdisk.img -snapshot"
g= hosts.KVMGuest(kvm_on_remote_host, qemu_options)
g.wait_up()

print g.run('uname -a').stdout.strip()

Compiling Options

You have to specify the source package for kvm, this should be an
archive from
http://sourceforge.net/project/showfiles.phpgroup_id=180599.
When the KVM object is installed you have the control over two options:
build (default True) and insert_modules (default True).

If build is True, Autoserv will execute configure and make
to build the KVM client and kernel modules from the source material.
make install will never be performed, to avoid disturbing an already
present install of kvm on the system. In order for the build to succeed,
the kernel source has to be present (/lib/modules/$(uname -r)/build
points to the appropriate directory). If build is False,
configure and make should have been executed already and the
binaries should be present in the source directory that was specified to
get() (in step 2). You can also
re-archive (tar) the source directories after building kvm if you wish
and specify an archive to get().

If insert_modules is True, Autoserv will first remove the kvm
modules if they are present and insert the ones from the source material
(that might have just been compiled or might have been already compiled,
depending on the build option) when doing the install(). When the
KVM object is deleted, it will also remove the modules from the kernel.
At the moment, Autoserv will check for the appropriate type of kernel
modules to insert, kvm-amd or kvm-intel. It will not check if qemu
or qemu-system-x86_64 should be used however, it always uses the
latter. If insert_modules is False, the running kernel is assumed to
already have kvm support and nothing will be done concerning the
modules.

In short:

	If your kernel already includes appropriate kvm support, run
install(addresses, build=True, insert_modules=False) or
install(addresses, build=False, insert_modules=False) depending on
wether you have the source for the running kernel. If kvm kernel
support is compiled as modules, make sure that they are loaded before
instantiating a KVMGuest, possibly using a command like this
remote_host.run("modprobe kvm-intel") in your control file.

	If the kernel source will be present on the host, run
install(addresses, build=True, insert_modules=True)

	Otherwise, compile the kvm sources on the server or another machine
before running Autoserv and run install(addresses, build=False,
insert_modules=True)

Kernel Considerations

Here are some kernel configuration options that might be relevant when
you build your kernels.

Host Kernel

CONFIG_HPET_EMULATE_RTC, from the kvm
faq [http://kvm.qumranet.com/kvmwiki/FAQ#head-ba9cf8ea65a0023b2cba804f14b013ff556f9b3f]:
I get “rtc interrupts lost” messages, and the guest is very slow

KVM, KVM_AMD, KVM_INTEL, if your kernel is recent enough and you
want to have kvm support from the kernel

Guest Kernel

There are no specific needs for the guest kernel, so long as it can run
under qemu, it is OK. Qemu emulates an IDE hard disk. Many distribution
kernels use ide and ide_generic drivers so sticking with those instead
of the newer libata potentially avoids device name changes from /dev/hda
to /dev/sda. These can be compiled as modules, in which case an initrd
will be needed. There is no real need for that however, compiling in the
IDE drivers avoids the need for an initrd, this will ease the use of the
qemu -kernel option.

Disk Image Considerations

The disk image must be specified as a qemu option, as in the example
above:

qemu_options= "-m 256 -hda /var/local/vdisk.img -snapshot"
g= hosts.KVMGuest(kvm_on_remote_host, qemu_options)

Here /var/local/vdisk.img is the disk image and -snapshot
instructs qemu not to modify the disk image, changes are discarded after
the virtual machine terminates. Please refer to the QEMU
Documentation [http://wiki.qemu.org/Manual] for
more information on the options you can pass to qemu.

IP Address Configuration

A few things have to be considered for the guest disk image. The most
important one is specified in the kvm.py:intall() documentation: “The
virtual machine os must therefore be configured to configure its network
with the ip corresponding to the mac”. Autoserv can only control the mac
address of the virtual machine through qemu but it will attempt to
contact it by its ip. You specify the mac-ip mapping in the install()
function but you also have to make sure that when the virtual machine
boots it acquires/uses the right ip. If you only want to spawn one
virtual machine at a time you can set the ip statically on the guest
disk image. If on the other hand you want to spawn many guests from the
same disk image, you can assign ip’s from a properly configured dhcp
server or you can have the os of the virtual machine choose an ip based
on its mac. One way to do this with Debian compatible GNU/Linux
distributions is through the /etc/network/interfaces file with a
content similar to the following:

auto eth0
mapping eth0
 script /usr/local/bin/get-mac-address.sh
 map 02:00:00:00:00:01 vhost1
 map 02:00:00:00:00:02 vhost2

iface vhost1 inet static
 address 10.0.2.1
 netmask 255.0.0.0
 gateway 10.0.0.1
iface vhost2 inet static
 address 10.0.2.2
 netmask 255.0.0.0
 gateway 10.0.0.1

The file /usr/local/bin/get-mac-address.sh is the following:

#!/bin/sh

set -e

export LANG=C

iface="$1"
mac=$(/sbin/ifconfig "$iface" | sed -n -e '/^.*HWaddr \([:[:xdigit:]]*\).*/{s//\1/;y/ABCDEF/abcdef/;p;q;}')
which=""

while read testmac scheme; do
 if ["$which"]; then continue; fi
 if ["$mac" = "$(echo "$testmac" | sed -e 'y/ABCDEF/abcdef/')"]; then which="$scheme"; fi
done

if ["$which"]; then echo $which; exit 0; fi
exit 1

The /etc/network/interfaces file is repetitive and tedious to write,
instead it can be generated with the following python script. Make sure
to adjust the values for map_entry, host_entry, first_value
and last_value:

#!/usr/bin/python

header= """# This file describes the network interfaces available on your system
and how to activate them. For more information, see interfaces(5).

The loopback network interface
auto lo
iface lo inet loopback

The primary network interface
auto eth0
mapping eth0
 script /usr/local/bin/get-mac-address.sh"""

map_entry= " map 00:1a:11:00:00:%02x vhost%d"

host_entry= """iface vhost%d inet static
 address 10.0.2.%d
 netmask 255.0.0.0
 gateway 10.0.0.1"""

print header

first_value= 1
last_value= 16

for i in range(first_value, last_value + 1):
 print map_entry % (i, i,)

print ""

for i in range(first_value, last_value + 1):
 print host_entry % (i, i,)

SSH Authentication

Since a guest is accessed a lot like a SSHHost, it must also be
configured for password-less login, for example through public key
authentication.

Serial Console

Altough this is not necessary for Autoserv itself, it is almost
essential to be able to start the guest image with qemu manually, for
example to do the initial setup. Qemu can emulate the display from a
video card but it can also emulate a serial port. In order for this to
be useful, the guest image must be setup appropriately:

	in the grub config (/boot/grub/menu.lst), if you use grub, to
display the boot menu

serial --unit=0 --speed=9600 --word=8 --parity=no --stop=1
terminal --timeout=3 serial console

	in the kernel boot options, for boot and syslog output to the console

console=tty0 console=ttyS0,9600

	have a getty bound to the console for login, in /etc/inittab

T0:23:respawn:/sbin/getty -L ttyS0 9600 vt100

Running Autotest In a Guest

Here is an example Autoserv control file to run an Autotest job inside a
guest (virtual machine). This control file is special because it also
runs OProfile on the host to collect some profiling information about
the host system while the guest is running. This uses the system
installation of oprofile, it must therefore be properly installed and
configured on the host. The output of opreport is saved in the
results directory of the job that is run on the guest.

Here, a single address mapping is specified to kvm, since only one guest
will be spawned. We tried running oprofile inside a kvm guest, without
success, therefore it is not enabled. Finally, the options to
opcontrol --setup should be adjusted if you know that vmlinux is
present on the host system.

remote_host= hosts.SSHHost("192.168.1.1")

kvm_on_remote_host= kvm.KVM(remote_host)

kvm_on_remote_host.get("/var/local/src/kvm-compiled.tar.gz")
addresses= [{"mac": "02:00:00:00:00:01" , "ip" : "10.0.0.1"}]
kvm_on_remote_host.install(addresses, build=False, insert_modules=False)

qemu_options= "-m 256 -hda /var/local/vdisk.img -snapshot"
g1= hosts.KVMGuest(kvm_on_remote_host, qemu_options)
g1.wait_up()

at= autotest.Autotest()
at.get("/home/foo/autotest/client")
at.install(g1)

control_file= """
#~ job.profilers.add("oprofile", events= ["CPU_CLK_UNHALTED:8000"])
job.run_test("linus_stress")
"""

results_dir= "g1_results"

-- start oprofile
remote_host.run("opcontrol --shutdown")
remote_host.run("opcontrol --reset")
remote_host.run("opcontrol --setup "
 # "--vmlinux /lib/modules/$(uname -r)/build/vmlinux "
 "--no-vmlinux "
 "--event CPU_CLK_UNHALTED:8000")
remote_host.run("opcontrol --start")
--

at.run(control_file, results_dir, g1)

-- stop oprofile
remote_host.run("opcontrol --stop")
tmpdir= remote_host.get_tmp_dir()
remote_host.run('opreport -l &> "%s"' % (sh_escape(os.path.join(tmpdir, "report")),))
remote_host.get_file(os.path.join(tmpdir, "report"), os.path.join(results_dir, "host_oprofile"))
--

Changing the Guest Kernel

“Usual” Way

The kvm virtual machine uses a bootloader, it can be rebooted and kvm
will keep running, therefore, you can install a different kernel on a
guest just like on a regular host:

remote_host= hosts.SSHHost("192.168.1.1")

kvm_on_remote_host= kvm.KVM(remote_host)
kvm_on_remote_host.get("/var/local/src/kvm-compiled.tar.gz")
addresses= [{"mac": "02:00:00:00:00:01" , "ip" : "10.0.0.1"}]
kvm_on_remote_host.install(addresses, build=False, insert_modules=False)

qemu_options= "-m 256 -hda /var/local/vdisk.img -snapshot"
g1= hosts.KVMGuest(kvm_on_remote_host, qemu_options)
g1.wait_up()

print g1.run("uname -a").stdout

kernel= deb_kernel.DEBKernel()
kernel.get("/home/foo/linux-2.6.21.3-6_2.6.21.3-6_amd64.deb")

kernel.install(g1)
g1.reboot()

print g1.run("uname -a").stdout

“QEMU” Way

It is also possible to use the qemu -kernel, -append and
-initrd options. These options allow you to specify the guest kernel
as a kernel image on the host’s hard disk.

This is a situation where DEBKernel’s extract() method is useful because
it can extract the kernel image from the archive on the host, without
installing it uselessly. However, .deb kernel images do not contain an
initrd. The initrd, if needed, is generated after installing the package
with a tool like update-initramfs. The tools update-initramfs,
mkinitramfs or mkinitrd are all designed to work with an
installed kernel, it is therefore very inconvenient to generate an
initrd image for a .deb packaged kernel without installing it. The best
alternative is to configure the guest kernel so that it doesn’t need an
initrd, this is easy to achieve for a qemu virtual machine, it is
discussed in the section Guest Kernel. On
the other hand, if you already have a kernel and its initrd, you can
also transfer them to the host with send_file() and then use those.

An important thing to note is that even though the kernel image (and
possibly the initrd) are loaded from the host’s hard disk, the modules
must still be present on the guest’s hard disk image. Practically, if
your kernel needs modules, you can install them by manually starting
qemu (without the -snapshot option) with the desired disk image and
installing a kernel (via a .deb if you want) for the same version and a
similar configuration as the one you intend to use with -kernel. You
can also keep the -snapshot option and use the commit command in
the qemu monitor.

Here’s an example control file that uses the qemu -kernel option. It
gets the kernel image from a .deb, it is a kernel configured not to need
an initrd:

remote_host= hosts.SSHHost("192.168.1.1")

kvm_on_remote_host= kvm.KVM(remote_host)
kvm_on_remote_host.get("/var/local/src/kvm-compiled.tar.gz")
addresses= [{"mac": "02:00:00:00:00:01" , "ip" : "10.0.0.1"}]
kvm_on_remote_host.install(addresses, build=False, insert_modules=False)

kernel= deb_kernel.DEBKernel()
kernel.get("/home/foo/linux-2.6.21.3-6_2.6.21.3-6_amd64-noNeedForInitrd.deb")
kernel_dir= kernel.extract(remote_host)

qemu_options= '-m 256 -hda /var/local/vdisk.img -snapshot -kernel "%s" -append "%s"' % (sh_escape(os.path.join(kernel_dir, kernel.get_image_name()[1:])), sh_escape("root=/dev/hda1 ro console=tty0 console=ttyS0,9600"),)

g1= hosts.KVMGuest(kvm_on_remote_host, qemu_options)
g1.wait_up()

print g1.run("uname -a").stdout

Parallel commands

Autoserv control files can run commands in parallel via the
parallel() and parallel_simple() functions from
subcommand.py. This is useful to control many machines at the same
time and run client-server tests. Here is an example that runs the
Autoserv netperf2 test, which is a network benchmark. This example runs
the benchmark between a kvm guest running on one host and another
(physical) host. This control file also has some code to check that a
specific kernel version is installed on these hosts and install it
otherwise. This is not necessary to the netperf2 test or to parallel
commands but it is done here to have a known configuration for the
benchmarks.

def check_kernel(host, version, package):
 if host.run("uname -r").stdout.strip() != version:
 package.install(host)
 host.reboot()

def install_kvm(kvm_on_host_var_name, host, source, addresses):
 exec ("global %(var_name)s\n"
 "%(var_name)s= kvm.KVM(host)\n"
 "%(var_name)s.get(source)\n"
 "%(var_name)s.install(addresses)\n" % {"var_name": kvm_on_host_var_name})

remote_host1= hosts.SSHHost("192.168.1.1")
remote_host2= hosts.SSHHost("192.168.1.2")

kernel= deb_kernel.DEBKernel()
kernel.get("/var/local/linux-2.6.21.3-3_2.6.21.3-3_amd64.deb")

host1_command= subcommand(check_kernel, [remote_host1, "2.6.21.3-3", kernel])
host2_command= subcommand(check_kernel, [remote_host2, "2.6.21.3-3", kernel])

parallel([host1_command, host2_command])

install_kvm("kvm_on_remote_host1", remote_host1, "/var/local/src/kvm-33.tar.gz", [{"mac": "02:00:00:00:00:01", "ip" : "10.0.0.1"}])

qemu_options= "-m 256 -hda /var/local/vdisk.img -snapshot"
gserver= hosts.KVMGuest(kvm_on_remote_host1, qemu_options)
gserver.wait_up()

at= autotest.Autotest()
at.get("/home/foo/autotest/client")
at.install(gserver)
at.install(remote_host2)

server_results_dir= "results-netperf-guest-to-host-far-server"
client_results_dir= "results-netperf-guest-to-host-far-client"

server_control_file= 'job.run_test("netperf2", "%s", "%s", "server", tag="server")' % (sh_escape(gserver.hostname), sh_escape(remote_host2.hostname),)
client_control_file= 'job.run_test("netperf2", "%s", "%s", "client", tag="client")' % (sh_escape(gserver.hostname), sh_escape(remote_host2.hostname),)

server_command= subcommand(at.run, [server_control_file, server_results_dir, gserver])
client_command= subcommand(at.run, [client_control_file, client_results_dir, remote_host2])

parallel([server_command, client_command])

Autotest Server Quick Start

You can use the autoserv program located in the server directory of the
Autotest tree to run tests on one or more remote machines. The machines
must be configured so that you can ssh to them without being prompted for a
password.

A simple example is running the sleeptest on a remote machine. Say you
have two machines: On one you have installed the Autotest code (which
will be referred to as the server), and the other is a machine named
mack (which will be referred to as the client).

Then you can run sleeptest on the client. Go to the top of the autotest
tree:

server/autotest-remote -m mack -c client/tests/sleeptest/control

This will result in quite a bit of activity on the screen. Perhaps we
log too much, but you will definitely know that something is happening.
After some time the output should stop and if all went well you will see
that the results directory is now full of files and directories. Before
explaining that, first lets dissect the command above. The “-m” option is
followed by a comma delimited list of machine names (clients) on which
you wish to run your test. The “-c” option tells autoserv that this
is a client side test you are running. And the last argument is the
control file you wish to execute (in this case the sleeptest control
file).

The results directory will generally contain a copy of the control file
that is run (named control.srv). There will also be a keyval file and a
status.log file. In addition there will be a debug/ directory, and a
sysinfo/ directory along with a directory for each client machine (in
this case a mack/ directory). The results of the test are located in the
directories named for each client.

A server side control file allows the possibility of running a test that
involves two or more machines interacting. An example of a server side
multi-machine control file is server/tests/netperf2/control.srv. This
control file requires 2 or more client machines to run. An example of
how to use autoserv follows

server/autotest-remote -m mack,nack -s server/tests/netperf2/control.srv

In this example we are again running the command from the results/
directory. Here we see the “-s” option which specifies this as a
server side control file. We have specified two machines using the “-m”
option (mack and nack). The command should produce a flurry of activity.
Afterwards you can explore the contents of the results directory to see
the results. Of special note will be the contents of the
mack/netperf2/results/keyval and nack/netperf2/results/keyval files. One
of these files will list various performance metrics acquired by the
netperf test.

Autoserv Client Install

When you install an Autotest client from a server side control file,
either manually using Autotest.install or automatically when running
a client control file using autoserv, autoserv has to determine a
location on the remote host to install the client.

If you need the client installed in a specific location then the most
direct solution is to pass in an autodir parameter to
Autotest.install since this will disable any automatic determination
and just use the provided path. However in the case that this is not
possible or practical then the following sources are checked for a path
and the first one found is used:

	The result of calling Host.get_autodir if it returns a value

	The dirname of the target of the /etc/autotest.conf symlink on
the remote machine

	/usr/local/autotest if it exists on the remote machine

	/home/autotest if it exists on the remote machine

	/usr/local/autotest even if it doesn’t exist

Note that an Autotest client install will itself call
Host.set_autodir to set it to the install location it ended up
using.

Autotest server interaction with clients

Tests can be run on standalone machines, or in a server-client mode.

The server interaction is simple:

	Copy the control file across

	Execute the control file repeatedly until it completes

	Client notifies server of any reboot for monitoring

	Upon completion of control script, server pulls results back (not
client push)

All interaction with the server harness will be via the harness
object. This object provides for a per harness interface. A null
interface will be provided for standalone use.

Writing server-side control files

Start with the client-side files. It’s amazing how much stuff you can do
with them (including reboots, etc). The client-side harness will
communicate back with the server, and monitor status, etc.

However, if you want to do more powerful things, like control a complex
test across a cluster, you’ll probably want to use server-side control
files. Read Autotest Structure on how the
server works first, this will help explain things ...

Server-side control files have the same philosophy as the client-side
files, but run on the server, so it’s still a Python script, with all
the flexibility that gives you. You should generally name server-side
control files ending in ‘.srv’ - that makes it a lot easier to recognize
server-side control files at a glance.

You run a server-side control file by doing

server/autoserv -m <machine,machine,...> mycontrolfile.srv

We strip out the -m paramater, break up the comma-separated list, and
put that into your namespace as a list called “machines”. Any extra
arguments besides the control file name will appear as a list called
“args”.

A basic control file

A simple one might do something like this:

host = hosts.create_host(machines[0])

print host.run("uname -a").stdout
host.reboot()
print host.run("uname -a").stdout

Firstly we create a “host” object from the machine name. That has lots
of magic helpers for you, and is how you get most stuff done on the
client.

After, the control file runs “uname -a” on the remote host, printing the
output of the command. It then reboots the machine, and re-runs the
“uname -a” command. So you will see what kernel was running on the
machine when the test started, and then you will see whatever the
default kernel is once the machine is rebooting, ending up with output
like:

KERNEL VERSION AT START OF TEST
DEFAULT KERNEL VERSION

Running some server-side tests

Okay, so now we want to run some actual tests. The easiest kind of test
to run from the server is a server-side test (i.e. something in
server/tests or server/site_tests). You run it just like you would run
a client-side test from a client-side control file - with job.run_test.
So you can run a simple sleeptest with:

job.run_test("sleeptest")

This will run sleeptest. However, it’s important to remember that when
you run a server-side test then it runs on the server, not on the lis of
machines you pass in on the autoserv command line. For something like a
simple sleep test this doesn’t really matter, but in general your test
will need to manually do the setup required to run command remotely;
either by creating it’s own host object with create_host, or by
accepting a host object as a parameter.

Running some client-side tests

OK, so when it comes to running server-side tests we mentioned that you
have make sure your test runs all of its commands through a host object.
But if all your test needs to do is run a bunch of local commands, that
can make things a lot uglier; it would be easier to just run the test
directly on the test machine, like you do with a client-side test.

Fortunately, just using a server-side control file it doesn’t mean that
you have use server-side tests; you can write client-side tests like you
normally would and still use a control file from the server-side to do
whatever setup you need to do, then launch the tests on the remote
machine using the Autotest client.

So, supposing we want to run some client-side tests on a remote machine.
What you then need to do is:

	create a host object with hosts.create_host

	create an Autotest object with autotest.Autotest, on the remote host

	run a client-side control file on the remote host with run (or use
the run_test helper for the simple case of running a single test)

You can do this like so:

host = hosts.create_host(machines[0])
at = autotest_remote.Autotest()(host)
at.run_test('kernbench', iterations=2)

This will create a host object, create an Autotest object against that
host, and then run the client-side kernbench test on the remote host,
using Autotest. If Autotest is not installed on the remote machine,
using at.run_test (or at.run) would automatically install it first.
Alternatively, if you need to explicitly control when the installation
of Autotest happens you can call at.install.

For an example of how to use run instead of run_test, see:

host = hosts.create_host(machines[0])
at = autotest_remote.Autotest(host)
control = """\
job.run_test('kernbench', iterations=5)
job.run_test('dbench', iterations=5)
job.run_test('tbench', iterations=5)
job.run_test('bonnie', iterations=5)
job.run_test('iozone', iterations=5)
job.run_test('fsx')
"""
at.run(control)

This will produce the same effect as if you installed an Autotest client
on the remote machine, created a control file like the one stored in the
‘control’ variable, and then ran it directly with the bin/autotest
script.

Running other existing server control files

So, sometimes instead of just running a specific test you actually have
a pre-existing suite of tests you want to run. For example, suppose you
have a control file for running a standard suite of fast-running
performance tests that you want to incorporate into a new control file
you’re building. You could just look at what tests the existing suite
runs and run them yourself from your new control file, but not only is
that a tedious bunch of cut-and-paste work, it also means that if the
“standard” suite changes you now have to go and update your new script
as well.

Instead of doing that, we can just make use of the job.run_control
method. This allows you to just run a control file directly from another
control file by passing in a file name. So for example, if on your
server installation you have a test_suites/std_quick_tests control
file, you can execute it from a new one quite simply as:

job.run_control('test_suites/std_quick_tests')

The path you pass is is relative to the Autotest directory (i.e.
job.autodir). Similarly, if you wanted to run the standard sleep test
control file you could do it with:

job.run_control('server/tests/sleeptest/control')

Note that variables from your current execution environment will not
leak into the environment of the executed control file, and vice versa.
So you cannot pass “parameters” into a control file by just setting a
global variable that the executed control file then reads, and you
cannot pass back results to assigning a global in the executed control
file. However, this doesn’t mean that the two execution environments are
completely isolated; in particular, the job instance used by the
executing file is the same one used by the executed file. However, as a
general rule control files should avoid developing interdependencies by
modifying the job object to pass information back and forth.

Using more than one machine at once

So far all the examples that have run on the remote machine have done so
using hosts.create_host(machines[0]) to create a Host object. However,
while this is okay for just trying things out it’s not a good way to
write a “real” control file; if you run autoserv with a list of
machines, you’ll only ever run tests on the first one!

Now, the most obvious thing to do would be to just wrap your machines[0]
in a for loop, but this isn’t going to work very well if you run
something against a hundred machines – it’s going to do the runs
sequentially, with 99 of the machines sitting around doing nothing at
any particular point in time. Instead what you want to do is run things
in parallel, like so:

def run(machine):
 host = hosts.create_host(machine)
 at = autotest_remote.Autotest(host)
 at.run_test('kernbench', iterations=5)

commands = [subcommand(run, args=[machine], subdir=machine) for machine in machines]
parallel(commands)

What this does is actually simpler than it looks; first, it defines a
runs kernbench on one machine. Then, it defines a list of subcommands,
one for each machine. Finally, it uses parallel to run all these
commands (in parallel, via fork).

If you’re familiar with job.parallel on the client, this is somewhat
similar, but more powerful. The job.parallel method represents
subcommands as a list, with the first item being a function run and the
remainder being arguments to pass to it. The subcommand object is
similar, taking a function and a list of args to pass to it.

In addition, subcommand also takes a very useful subdir argument to
allow us to avoid mashing together all the results from each machine in
the same results directory. If you specify subdir to a subcommand, the
forked subcommand will run inside of subdir (creating it if it exists).
So you will end up with three separate kernbench results in three
separate machine subdirectories.

It’s important to keep in mind that the final test results parser really
only works well with results directories that are associated directly
with a single machine, so when using parallel to do separate runs on
individual machines you pretty much always want to specify a
subdir=machine argument to your subcommands.

In fact, for this very specific case (running the exact same function on
N machines) we have a special helper method, job.parallel_simple,
doesn’t require as much setup. You could replace the above code with the
simpler:

def run(machine):
 host = hosts.create_host(machine)
 at = autotest_remote.Autotest(host)
 at.run_test('kernbench', iterations=5)

job.parallel_simple(run, machines)

Synchronous vs Asynchronous jobs

If you run control files through the frontend, it needs to know how you
want them to be run.

Let’s say there’s 6 clients we’re controlling. We could either run
asynchronously, with a separate autoserv instance controlling each
machine. If you do this, it will kick off separate autoserv instances as
each machine becomes available. We ask for this by specifying
SYNC_COUNT=1

autoserv control_file -m machine1
autoserv control_file -m machine2
autoserv control_file -m machine3
autoserv control_file -m machine4
autoserv control_file -m machine5
autoserv control_file -m machine6

Or we can run synchronously. If you do that, we’ll wait for *all* the
machines you asked for before starting the job, and do something like
this:

autoserv control_file -m machine1,machine2,machine3,machine4,machine5,machine6

Often we only need to pair up machines (say 1 client and 1 server to run
a network test). But we don’t want to wait for all 6 machines to be
available; as soon as we have 2 ready, we might as will kick those off.
We can use SYNC_COUNT to specify how many we need at a time, in this
case SYNC_COUNT=2. We’ll end up doing something like this:

autoserv control_file -m machine1,machine2
autoserv control_file -m machine3,machine4
autoserv control_file -m machine5,machine6

Installing kernels from a server-side control file

So, if you’ve written a client-side control file for installing a
kernel, you’re probably familiar with code that looks something like:

testkernel = job.kernel('/usr/local/mykernel.rpm')
testkernel.install()
testkernel.boot()

This will install a client on the local machine. Well, we’ve also seen
that in a server-side control file, unless you use a Host object to run
commands then your operations run on the server, not your test
machine(s). So just trying to use the same code won’t work.

However, we’ve already seen that you can use an Autotest object to run
arbitrary client-side control files on a remote machine. So you can
instead use some code like this:

kernel_install_control = """
def step_init():
 job.next_step([step_test])
 testkernel = job.kernel('/usr/local/mykernel.rpm')

 testkernel.install()
 testkernel.boot()

def step_test():
 pass
"""

def install_kernel(machine):
 host = hosts.create_host(machine)
 at = autotest_remote.Autotest(host)
 at.run(kernel_install_control, host=host)
job.parallel_simple(install_kernel, machines)

This will install /usr/local/mykernel.rpm on all the machines you’re
running your test on, all in parallel. You can then follow up this code
in your control file with the code to run your actual tests.

The Host classes

There are six main classes in the Host hierarchy, with two concrete
classes that can be instantiated; one that uses the OpenSSH binary for
executing commands on a remote machine, and one that uses the Paramiko
module to do the same. The specific classes are:

	Host - the top-level abstract base class, contains definitions
for most of the standard Host methods, as well as implementations for
some of the high-level helper methods.

	RemoteHost - a subclass of Host that also adds some options
specific to “remote” machines, such as having a hostname, as well as
providing generic reboot and crashinfo implementations.

	SiteHost - a subclass of RemoteHost that allows you to hook
site-specific implementation behavior into your Host classes.
This may not even be defined (in which case we automatically default
to providing a empty definition) but can be used to insert hooks into
any methods you need. And example of such a use would be adding a
machine_install implementation that takes advantage of your local
installer infrastructure and so isn’t suitable for inclusion into the
core classes.

	AbstractSSHHost - a subclass of SiteHost, this provides most
of the remaining implementation needed for using ssh-based
interaction with a remote machine such as the ability to copy files
to and from the remote machine as well as an implementation of the
various wait_* methods

	SSHHost - one of the concrete subclasses of AbstractSSHHost,
this class can be directly instantiated. It provides an
implementation of Host.run based around using an external ssh binary
(generally assumed to be OpenSSH). This is also currently the default
implementation used if you’re using the factory to create the method
rather than creating Host instance directly.

	ParamikoHost - the other concrete subclass of
AbstractSSHHost. This class provides a lower-overhead,
better-integrated alternative to the SSHHost implementation, with
some caveats. In order to use this class directly you’ll need to
explicitly create an instance of the class, or use custom hooks into
the host factory. Note that using this class also requires that you
have the paramiko library installed, as this module is not included
in the Python standard library.

Creating instances of Host classes

The concrete host subclasses (SSHHost, ParamikoHost) can both be
instantiated directly, by just creating an instance. Both classes accept
hostname, user (defaults to root), port (defaults to 22) and password
(nothing by default, and ignored if connecting using ssh keys). So the
simplest way to create a host is just with a piece of code such as:

from autotest_lib.server.hosts import paramiko_host

host = paramiko_host.ParamikoHost("remotemachine")

However, there are several disadvantages to this method. First, it ties
you to a specific SSH implementation (which you may or may not care
about). Second, it loses out on support for the extra mixin Host classes
that Autotest provides. So the preferred method for creating a host
object is:

from autotest_lib.server import hosts

host = hosts.create_host("remotemachine")

The create_host function passes on any extra arguments to the core host
classes, so you can still pass in user, port and password options. It
also accepts additional boolean parameters, auto_monitor and
netconsole.

If you use create_host to build up your instances, it also mixes in
some extra monitoring classes provided by Autotest. Specifically, it
mixes in SerialHost and/or LogfileMonitorMixin, depending on
what services are available on the remote machine. Both of these classes
provide automatic capturing and monitoring of the machine (via
SerialHost if the machine has a serial console available via conmux,
via monitoring of /var/log/kern.log and /var/log/messages otherwise). If
netconsole=True (it defaults to False) then we will also enable and
monitor the network console; this is disabled by default because network
console can interact badly with some network drivers and hang machines
on shutdown.

If for some reason you want this monitoring disabled (e.g. it’s too
heavyweight, or you already have some monitoring of the host via
alternate machines) then it can still be disabled by setting
auto_monitor=False. This allows you to still use create_host to
automatically select the appropriate host class; by default this still
just uses SSHHost, but in the future it may change. Or, your server
may be using custom site hooks into create_host which already change
this behavior anyway.

Custom hooks in create_host

You can optionally define a site_factory.py module with a
postprocess_classes function. This takes as its first parameter a list
of classes that will be mixed together to create the host instance, and
then a complete copy of the args passed to create_host. This function
can then modify the list of classes (in place) to customize what is
actually mixed together. For example if you wanted to default to
ParamikoHost instead of SSHHost at your site you could define a
site function:

from autotest_lib.server.hosts import ssh_host, paramiko_host

def postprocess_classes(classes, **args):
 if ssh_host.SSHHost in classes:
 classes[classes.index(ssh_host.SSHHost)] = paramiko_host.ParamikoHost

This will change the factory to use ParamikoHost by default instead.
Or you could do other changes, for example disabling SerialHost
completely by removing it from the list of classes. Or you could do
something even more complex, like using ParamikoHost if a host
supports it and falling back to SSHHost otherwise. Adding additional
args to postprocess_classes is also an option, to add more
user-controllable host creation, but keep in mind that such extensions
can then only be used in site-specific files and tests.

Paramiko vs OpenSSH

Why do we provide two methods of connecting via ssh at all? Well, there
are a few advantages and disadvantages to both.

Why openssh?

If we use openssh then we generally have more portability and better
integration with the users configuration (via ssh_config). This is also
more configurable in general, from an external point of view, since a
user can customize ssh behavior somewhat just by tweaking ~/.ssh/config

So why paramiko?

However, there are also limitations that come up with openssh. It mostly
operates as a black box; all we can do to detect network- or ssh-level
issues is to watch for a 255 exit code from ssh, and to attempt to break
things down into authentication issues versus various connection issues
we have to try and parse the output of the program itself, output which
may be mixed in with the output of the remote command.

There can also be performance issues when openssh is in use, due to the
large number of processes that can end up being spawned to run ssh
commands; even if most of this memory is cached and shared the memory
costs start to pile up. Additionally the cost of creating new
connections for every single ssh command can start to pile up.

Paramiko alleviates these problems by moving the ssh handler in-process
as a python library, and taking advantage of the multi-session support
in SSH protocol 2 to run multiple commands over a single persistent
connection. However, it has the cost of requiring that you use a
protocol 2 sshd on the remote machine, and requires installing the
paramiko library. It also has much weaker support for ssh_config, with
some support for finding keyfiles (via IdentityFile?) and nothing else.

Setting up ParamikoHost

There are two main issues you need to resolve to use ParamikoHost,
1) installing paramiko and 2) making sure you have support for protocol
2 connections.

Point one is fairly straightforward, just refer to one of the bullet
points in autotest server install
that explains how to install paramiko.

Point two is a bit more complex. There’s a fairly good chance your
infrastructure already supports protocol 2, since it’s been around for
quite a long time now and is generally considered to be the standard. To
test it, just try connecting to a machine via ssh using the
-o Protocol=2 option; if it succeeds then ParamikoHost should
just work once the point one is taken care of. If it fails with an error
message about protocol major version numbers differing, then you’re in
trouble; you’ll need to reconfigure sshd on your remote machines to
support protocol 2, and if you’re using key-based authentication you’ll
need to add support for protocol 2 keys as well. If these configuration
changes are not practical (either for technical or organizational
reasons) then you’ll simply have to forgo the use of ParamikoHost.

Standard Methods

The Host classes provide a collection of standard methods for running
commands on remote machines, copying files to and from them, and
rebooting them (for remote machines).

Host.run

This method can be used to run commands on a host via an interface like
that of the run function in the utils module. It returns a CmdResult?
object just like utils.run, and supports the ignore_status, timeout and
std*_tee methods with the same semantics.

Host.send_file, Host.get_file

These methods allow you to copy file(s) and/or directory(s) to a remote
machine. You can provide a single path (or a list of paths) as a source
and a destination path to copy to, with send_file for destinations on
the host and get_file for sources on the host. The pathname semantics
are intended to mirror those of rsync so that you can specify “the
contents of a directory” by terminating the path with a /.

Host.reboot, Host.reboot_setup, Host.reboot_followup, Host.wait_up, Host.wait_down

The reboot method allows you to reboot a machine with a few different
options for customizing the boot:

	timeout - allows you to specify a custom timeout in seconds. Used
when you want reboot to automatically wait for the machine to restart
(the default). If the reboot takes longer than timeout seconds to
come back after shutting down then an exception will be thrown.

	label - the kernel label, used to specify what kernel to boot into.
Defaults to host.LAST_BOOT_TAG which will reboot into whatever
kernel the host was last booted into by Autotest (or the default
kernel if Autotest has not yet booted the machine in the job).

	kernel_args - a string of extra kernel args to add to the kernel
being booted, defaults to none (which means no extra args will be
added)

	wait - a boolean indicating if reboot should wait for the machine to
restart after starting the boot, defaults to true. If you set this to
False then if you try to run commands against the Host it’ll just
time out and fail, and the reboot_followup method won’t be called.

	fastsync - if True (default is False) don’t try to sync and wait for
the machine to shut down cleanly, just shut down. This is useful if a
faster shutdown is more important than data integrity.

	reboot_cmd - an optional string that lets you specify your own
custom command to reboot the machine. This is useful if you want to
specifically crank up (or turn down) the harshness of the shutdown
command.

In addition to reboot, there are two hooks (reboot_start and
reboot_followup) that are called before and after the reboot is run.
This allows you to define mixins (like SerialHost and some other
classes we’ll mention later) that can hook into the reboot process
without having to implement their own reboot.

Finally, there are wait_down and wait_up methods, specifically for
waiting for a rebooting machine to shut down or come up. If you use the
reboot method these should generally be only used internally, but you
can use them yourself directly if you need more custom control of the
powering up and/or down of the machine.

Synchronize clients in multi machine (server) tests

Synchronization is useful when is started server part test which starts client
part test on multiple hosts, then is sometimes needed to synchronize state or
data between client part tests. By this reason was created class Barrier and
class Syncdata. Both classes are placed in autotest/client/shared.

class Barrier

Barrier allows only state synchronization. Both clients start:

job.barrier(host_name, tag, timeout)

Where:

	host_name:	Host identifier (host_ip | host_name[#optional_tag]).

	tag:	Identifier of barrier.

	timeout:	Timeout for barrier.

Usage:

b = job.barrier(ME, 'server-up', 120) # Create barrier object
b.rendezvous(CLIENT, SERVER) # Block test(thread) until barrier is reached
 # by all sides or barrier timeouted.

Where ME depends where is this code started. It could be CLIENT or SERVER.
The same code is started all hosts which waits for barrier.

Communication:

MASTER CLIENT1 CLIENT2
<-------------TAG C1-------------
--------------wait-------------->
 [...]
<-------------TAG C2-----------------------------
--------------wait------------------------------>
 [...]
--------------ping-------------->
<-------------pong---------------
--------------ping------------------------------>
<-------------pong-------------------------------
 ----- BARRIER conditions MET -----
--------------rlse-------------->
--------------rlse------------------------------>

Master side creates socket server. Client side connects to this server and
communicate through them. During waiting, the barrier checks if all sides
which wait for barrier are alive. For the checking barrier uses ping-pong messages.

class SyncData

SyncData class allows synchronization of state and data but it not check liveness of synchronized nodes.
When one node dies after sending his data, others nodes know nothing about death of node. Information about
death is logged to log. SyncData class could be use instead class Barrier.

SyncData(master_id, hostid, hosts, session_id, sync_server)

Where:

	master_id:	master host identifier. This host has or create sync_server and others connect to them.

	hostid:	host identifier.

	hosts:	list of all host which should exchange data.

	session_id:	session_id identifies data synchronization. Session_id must be unique.

	sync_server:	If sync_server is None then master create new sync_server for synchronization.

Usage:

from autotest.client.shared.syncdata import SyncData

master_id = MASTER
sync = SyncData(master_id, hostid, hosts,
 session_id), tag))

data = sync.sync(data, timeout, session_id) # sync could be run in different threads
 # with different session_id simultaneously.
 # session_id there override session_id defined in
 # class definition. session_id could be None.

data_hostid2 = data[hostid2] # data = {hostid1: data1, hostid2: data2}

sync return dictionary with data from all clients.

Communication:

MASTER CLIENT1 CLIENT2
if not listen_server -> create

<-------session_id/hosts/timeout-------------
<-----------------data1----------------------
 [...]
<-----------------session_id/hosts/timeout----------------------
<----------------------------data2------------------------------
-------{hostid1: data1, hostid2: data2}------>
<---------------------BYE---------------------
-----------------{hostid1: data1, hostid2: data2}-------------->
<-------------------------------BYE-----------------------------

Server waits for data from all clients and then sends data to all clients.

Autoserv message logging specification

	All output for the job, and any tests in it should go in debug/

	All output within a parallel_simple() subcommand should also go in
$hostname/debug (for parallel_simple() over hostnames)

	All output during any test should also go in $testname/debug/

	We should not buffer beyond one message

	All lines in the output should be tagged with the logging prefix (for
multi-line messages, that means one tag per line, so grep works)
	the prefix is “[m/d H:M:S level module]”, i.e. “[06/08 16:39:17
DEBUG utils]”

	All output from subcommands is logged, by default at DEBUG level for
stdout and ERROR level for stderr

	All print statements to stdout/stderr get logged with levels DEBUG
and ERROR respectively. Ideally we’d like to convert all print
statements into logging calls but that probably won’t happen any time
soon.

	In each debug/ directory, there are two log files kept:
	All debug level messages and above in autoserv.stdout

	All error level messages and above in autoserv.stderr

Conmux - Console Multiplexor

Conmux is a console multiplexor. It can:

	Connect to a serial console or network console

	Allow multiple users to connect to the console session at once, and
share that session

	Control power strips etc (via expect scripts) - these are abstracted
through commands like “~$hardreset”

Manual usage:

console <machinename>

Conmux HOWTO - A walkthrough for setting up a
conmux server and creating console configurations

Original Documentation

Installing a Conmux Server

This document will explain how to install a conmux server starting from
the Autotest codebase. A rudimentary configuration for an example
console will also be provided

Installing the conmux server

This assumes that you already have a freshly sync’d version of Autotest
as defined in: Downloading The Source or
that you are using one of the release tarballs. A lot of this is covered
in the
autotest/conmux/INSTALL [https://github.com/autotest/autotest/blob/master/conmux/INSTALL]
file.

Required perl modules:

	IO::Multiplex;
	Debian/Ubuntu? Packages: libio-multiplex-perl

	Fedora Packages: perl-IO-Multiplex

Installing IO::Multiplex via CPAN:

perl -MCPAN -e 'install IO::Multiplex'

Building

This section describes how to get the conmux system in to the place you
want it installed on your system. The default location is
/usr/local/conmux

To make and install this package to the default location

make install

To an alternative location:

make PREFIX=/usr/alt/conmux install

To build for a specified prefix, but installed into a temporary tree:

make PREFIX=/usr/alt/conmux BUILD=build/location install

Console configuration

This will walk through some configurations for consoles in conmux. Each
configuration has a listener, payload and optionally one or more panel
commands. Configuration is provided via a per console configuration
file.

	All configurations are stored in BASE_INSTALL/etc with a .cf
extension (e.g. dudicus.cf)

listener:

listener server/name defines the name of this console port as it
appears in the registry.

payload:

socket name title host:port defines a console payload connected
to a tcp socket on the network. name defines this payload within the
multiplexor, title is announced to the connecting clients.

application name title cmd defines a console payload which is
accessed by running a specific command. name defines this payload
within the multiplexor, title is announced to the connecting
clients.

command panel:

command panel message cmd defines a panel command for the
preceeding payload, triggered when panel is typed at the command
prompt. message is announced to the user community. cmd will be
actually executed.

Example Config

A conmux configuration using a socket to connect to the console

listener localhost/dudicus
socket console 'dudicus' '192.168.0.3:23'

Example with an application:

A very basic example of starting an application (which could be any
application including ones that connect to a proprietary protocol). This
is more just to show how this feature would be used.

listener localhost/cat
application console 'cat' '/bin/cat'

Not that in the above examples the listener is set to localhost. That
states that the localhost is where the consoles are started and where
the conmux_registry exists. If you are running lots of consoles you may
want to have one central registry and a number of different machines
providing access to them if that were the case you would want to set
localhost to the hostname where the conmux registry is running.

Conmux configuration with hardreset

Adding a hardreset command, if you aren’t familiar with the Autotest
Hardreset please refer to that for terminology. There are a number of
different expect scripts/python pexect scripts available in
conmux/lib/drivers (on the installed server) each one of these connects
to an RPM in their own way. A unified solution is being worked on but it
is low priority. Basically the customer needs to give you the
information required as outlined in the hardreset documentation and then
you identify which script to use by connecting to the RPM and looking
for brandings like SENTRY or CITRIX etc.

listener localhost/dudicus
socket console 'dudicus' '192.168.0.3:23'
command 'hardreset' 'initiated a hard reset' 'reboot-cyclades 192.168.0.12 48 user password 5'

Conmux doesn’t really care what it is calling here it is just a program
with parameters, to understand how to use the reboot-cyclades driver you
need to actaully open up the file and read it.

Generic command Below is an example of a generic command. Commands
are issued using the ~$ escape sequence and then the command name. An
example of a useful command would be one to show the configuration of
the console you are connected to:

Add the following to your config.cf file:

"command 'config' 'Show conmux configuration' 'cat /home/conmux/etc/dudicus.cf'

Example output:

[/usr/local/conmux/bin]$./console netcat
Connected to netcat [channel transition] (~$quit to exit)

Command(netcat)> config
(user:me) Show conmux configuration
listener localhost/netcat
socket console 'netcat' 'localhost:13467'
command 'config' 'Show conmux configuration' 'cat /usr/local/conmux/etc/netcat.cf'

Starting the Conmux Server

Conmux comes with a bash script that will do the following

	Start the conmux registry

	Start all configurations in BASE_INSTALL/etc that end with .cf
prefixes

	Restart consoles that died since the last start command

	Restart consoles whose configuration has changed since the last start
command

	Log console output in BASE_INSTALL/log

To start the conmux registry and all the consoles issue the following
command

BASE_INSTALL/sbin/start

Example output:

/usr/local/conmux/sbin/start
starting registry ...
starting CONSOLE1 ...
starting CONSOLE2 ...

Mock Console Setup using nc

After following all of the above this section provides a concrete
example for users who do not currently have access to any console
hardware. In this section a configuration will be setup for a console on
localhost. Netcat will be used on the machine to listen to the port for
a connection so that an actual console connection can be created.

The configuration:

etc/netcat.cf

listener localhost/netcat
socket console 'netcat' 'localhost:13467'
command 'config' 'Show conmux configuration' 'cat /usr/local/conmux/etc/netcat.cf'

Start netcat in a different terminal listening on port 13467

nc -l -p 13467

Start your conmux server

BASE_INSTALL/sbin/start

Now connect to the console:

BASE_INSTALL/bin/console netcat

Output should be similar to:

/usr/local/conmux/bin]$./console netcat
Connected to netcat [channel connected] (~$quit to exit)

If you start typing in here you will notice in the terminal where netcat
is running what you typed and vice versa.

You can also issue the config command by using ~$ and inputting
config

Conmux - Original Documentation

conmux, the console multiplexor is a system designed to abstract the
concept of a console. That is to provide a virtualised machine
interface, including access to the console and the ‘switches’ on the
front panel; the /dev/console stream and the reset button. It creates
the concept of a virtual console server for multiple consoles and
provides access to and sharing of consoles connected to it.

There are two main motivations for wanting to do this. Firstly, we have
many different machine types with vastly differing access methodologies
for their consoles and for control functions (VCS, HMC, Annex) and we
neither want to know what they are nor how they function. Secondly, most
console sources are single access only and we would like to be able to
share the console data between many consumers including users. Basic
Usage

The main interface to the consoles is via the console program. This
connects us to the console server for the machine and allows us to
interact with it, including issuing out-of-band commands to control the
machine.

$ console <host>/<console>

In the example below we indicate that the console we require is located
on the virtual console server consoles.here.com and the specific console
is elm3b70.

$ console consoles.here.com/elm3b70
Connected to elm3b70 console (~$quit to exit) Debian GNU/Linux 3.1 elm3b70 ttyS0
elm3b70 login:

Once connected we can interact normally with the console stream. To
perform front pannel operation such as peforming an hard reset we switch
to command mode. This is achieved using the escape sequence ~$. Note the
prompt Command>

elm3b70 login: ~$
Command> quit
Connection closed $

Command Summary

The following commands are generally available:

	Command
	Description

	quit
	quit this console session, note that this disconnects us from the session it does not affect the integity of the session itself.

	hardreset
	force a hard reset on the machine, this may be a simple reset or a power off/on sequence whatever is required by this system.

Architecture

The conmux provides a virtual console multiplexor system reminicent of
an Annex terminal server. You refer to the conmux server and lines,
unlike an Annex lines are referred to by mnemonic names. Above we
referred to the console for elm3b70 ‘connected to’ the server
consoles.here.com. A virtual console server consists of a number of
server processes. One conmux-registry server, several conmux servers and
optionally several helper processes.

conmux-registry: a server is defined by the server registry. This
maintains the mnemonic name to current server location relation. When a
client wishes to attach to a console on a server, the registry is first
queried to locate the server currently handling that console.

conmux: for each connected console there is a corresponding console
multiplexor. This process is responsible for maintaining the connection
to the console and for redistributing the output to the various
connected clients. It is also responsible for handling “panel” commands
from the client channels.

autoboot-helper: an example helper which aids systems which are not
capable of an automatic reboot. It connects to a console and watches for
tell-tale reboot activity, preforming a “panel” hardreset when required.
This provides the impression of seamless reboot for systems which this
does not work. Configuration conmux-registry

Configuration of this service is very simple. Supplying the default
registry port (normally 63000) and the location for the persistant
registry database. conmux

Configuration of each conmux is complex. Each has a listener, payload
and optionally one or more panel commands. Configuration is provided via
a per console configuration file. This file consists of lines defining
each element:

listener <server>/<name>: defines the name of this console port as it appears in the registry.

socket <name> <title> <host>:<port>: defines a console payload connected to a tcp socket on the network. name defines this payload within the multiplexor, title is announced to the connecting clients.

application <name> <title> <cmd>: defines a console payload which is accessed by running a specific command. name defines this payload within the multiplexor, title is announced to the connecting clients.

command <panel> <message> <cmd>: defines a panel command for the preceeding payload, triggerd when panel is typed at the command prompt. message is announced to the user community. cmd will be actually executed.

For example here is the configuration for a NUMA-Q system which is
rebooted using a remote VCS console and for which the real console
channel is on an Annex terminal server:

listener localhost/elm3b130
socket console 'elm3b130 console' console.server.here.com:2040
command 'hardreset' 'initated a hard reset' \ './reboot-numaq vcs 1.2.3.4 elm3b130 12346 Administrator password'

ACL Behavior Reference

The following is a reference for the actions that ACLs restrict.

Hosts

	Users must be in some ACL with a host to modify or delete the host
and to add the host to an ACL group.

Jobs

	For jobs scheduled against individual hosts, the user must be in some
ACL with the host.

	The owner of a job may abort the job. Any other user with ACL access
to a host can abort that host for any job, unless the host is in
the ‘Everyone’ ACL.

ACL Groups

	To add or remove users/hosts in an ACL, the user must be a member of
that ACL.

	The ‘Everyone’ ACL cannot be modified or deleted.

	When a host is added to an ACL other than ‘Everyone’, it is
automatically removed from ‘Everyone’. As long as it is a member of
some other ACL it will always be automatically removed from
‘Everyone’.

	When a host is removed from all ACL, it is automatically added to
‘Everyone’.

Superusers

Superusers can bypass most of these restrictions. The only thing a
superuser cannot do is delete the ‘Everyone’ group. To create a
superuser, run the script at
<autotest_root>/frontend/make_superuser.py, with the username as a
command-line parameter.

Frontend

	Autotest Command Line Interface
	Topic References

	Common options

	Server Access

	Wildcard

	File List Format

	Access Control List Management - autotest-rpc-client acl
	Creating an ACL

	Deleting an ACL

	Listing ACLs

	Adding Hosts or Users to an ACL

	Removing Hosts or Users from an ACL

	Possible errors and troubleshooting

	Host Management - autotest-rpc-client host
	Creating a Host

	Deleting a Host

	Listing Hosts

	Getting Hosts Status

	Modifying Hosts Status

	Job Management - autotest-rpc-client job
	Creating a Job

	Listing Jobs

	Getting Jobs Status

	Aborting Jobs

	Label Management - autotest-rpc-client label
	Creating a label

	Deleting a label

	Listing labels

	Adding Hosts to a Label

	Removing Hosts from a Label

	Possible errors and troubleshooting

	Test Management - autotest-rpc-client test
	Listing Tests

	User Management - autotest-rpc-client user
	Listing users

	Frontend Database (autotest_web)

	Understanding the TKO Results Database
	Structure of test results

	How are test results created?

	Further reading

	TKO results database

	MySQL replication
	Introduction

	Preparing the Master

	Creating a Snapshot

	Setting up the Slave

	RPC Server
	Models

	RPC Interface

	Custom RPC Scripts

	Policy for changing the frontend(AFE) and TKO RPC protocols

	Web Frontend HOWTO
	Job List

	View Job

	Create Job

	Host List

	View Host

	User preferences

	Admin interface

	Web Frontend Roadmap
	AFE

	TKO

	Configuring hosts on the Autotest server
	Hosts

	Labels

	ACLs

	Atomic Groups

	Setting a Graphing Filter
	Interface Options

	Filter String Viewer

	Preconfigured Graphing Queries

	Using the Metrics Plot Frontend
	Using the Interface

	Metrics Preconfigs

	Machine Qualification Preconfigs

	TKO Web Interface Requirements
	Overview

	Filtering conditions

	Spreadsheet view

	Table view

	Plotting view

	Test details

	Use cases

	Specific feature requests

	Autotest Reporting API
	Setup

	Graphing

	Autotest Web Frontend Implementation details
	Overview

	Host Protection Levels

	Specifying kernels in the Job Creation Interface

	Using the Machine Qualification Histogram Frontend
	Using the Interface

	Existing Graphing Scripts Frontend
	Interface Options

Autotest Command Line Interface

Autotest provides a set of commands that can be used to manage the
autotest database, as well as schedule and manage jobs.

The commands are in the ./cli directory.

The main command is called ‘autotest-rpc-client’. The general syntax is:

autotest-rpc-client <topic> <action> <items> [options]

Where:

	topic is one of: acl, host, job, label or user

	action is one of: create, delete, list, stat, mod, add, rm. Not all
the actions are available for all topics.

Topic References

The references for the different topics are available for acl?, label?,
host?, user?, test? and job? management

Common options

The options common to all commands are:

	help: displays the options specific to the topic and/or action.
It can be used as:
	autotest-rpc-client help

	autotest-rpc-client <topic> help

	autotest-rpc-client <topic> <action> help

	-w|--web: specifies the autotest server to use (see below).

	--parse: formats the output in colon separated key=values pairs.

	--kill-on-failure: stops processing the arguments at the first
failure. Default is to continue and displays the failures at the end.

	-v|--verbose: Displays more information.

Server Access

By default, the commands access the server at: http://autotest. This
can be overwritten by setting the AUTOTEST_WEB environment variable
or using the -w|--web option using only the hostname. The order of
priority is:

	the command line option,

	the AUTOTEST_WEB environment variable

	the default ‘autotest’ server.

Wildcard

The list action accepts the * wildcard at the end of a filter to
match all items starting with a pattern. It may be necessary to escape
it to avoid the * to be interpreted by the shell.

autotest-rpc-client host list host1*
Host Status Locked Platform Labels
host1 Ready False
host12 Ready False
host13 Ready False
host14 Ready False
host15 Ready False

File List Format

Several options can take a file as an argument. The file can contain
space- or comma-separated list of items e.g.,

cat file_list
host0
host1
host2,host3
host4 host5

Note the host1, host2 (comma and space) is not a valid syntax

Access Control List Management - autotest-rpc-client acl

The following actions are available to manage the ACLs:

autotest-rpc-client acl help
usage: autotest-rpc-client acl [create|delete|list|add|rm] [options] <acls>

Creating an ACL

autotest-rpc-client acl create help
usage: autotest-rpc-client acl create [options] <acls>

options:
 -h, --help show this help message and exit
 -g, --debug Print debugging information
 --kill-on-failure Stop at the first failure
 --parse Print the output using colon separated key=value
 fields
 -v, --verbose
 -w WEB_SERVER, --web=WEB_SERVER
 Specify the autotest server to talk to
 -d DESC, --desc=DESC Creates the ACL with the DESCRIPTION

Only one ACL can be create at a time. You must specify the ACL name and
its description:

autotest-rpc-client acl create my_acl -d "For testing" -w autotest-dev
Created ACL:
 my_acl

Deleting an ACL

autotest-rpc-client acl delete help
usage: autotest-rpc-client acl delete [options] <acls>

options:
 -h, --help show this help message and exit
 -g, --debug Print debugging information
 --kill-on-failure Stop at the first failure
 --parse Print the output using colon separated key=value
 fields
 -v, --verbose
 -w WEB_SERVER, --web=WEB_SERVER
 Specify the autotest server to talk to
 -a ACL_FLIST, --alist=ACL_FLIST
 File listing the ACLs

You can delete multiple ACLs at a time. They can be specified on the
command line or in a file, using the -a|--alist option.

autotest-rpc-client acl delete my_acl,my_acl_2
Deleted ACLs:
 my_acl, my_acl_2

Listing ACLs

autotest-rpc-client acl list help
usage: autotest-rpc-client acl list [options] <acls>

options:
 -h, --help show this help message and exit
 -g, --debug Print debugging information
 --kill-on-failure Stop at the first failure
 --parse Print the output using colon separated key=value
 fields
 -v, --verbose
 -w WEB_SERVER, --web=WEB_SERVER
 Specify the autotest server to talk to
 -a ACL_FLIST, --alist=ACL_FLIST
 File listing the ACLs
 -u USER, --user=USER List ACLs containing USER
 -m MACHINE, --machine=MACHINE
 List ACLs containing MACHINE

You can list all the ACLs, or filter on specific ACLs, users or machines
(exclusively). The --verbose option provides the list of users and
hosts belonging to the ACLs.

autotest-rpc-client acl list -w autotest-dev
Name Description
Everyone
reserved-qual Qualification machines
benchmarking_group Benchmark machines
my_acl For testing

autotest-rpc-client acl list -v -w autotest-dev
Name Description
Everyone
Hosts:
 qual0, qual1, qual2, qual3, qual4, host0, host1, host2, host3, host4
 bench0, bench1, bench2, bench3, bench4, test0
Users:
 user0, user1, user2, user3, user4

reserved-qual Qualification machines
Hosts:
 qual0, qual1, qual2, qual3, qual4
Users:
 user0

benchmarking_group Benchmark machines
Hosts:
 bench0, bench1, bench2, bench3, bench4
Users:
 user1, user2

my_acl For testing

autotest-rpc-client acl list -w autotest-dev -u user0
Name Description
Everyone
reserved-qual Qualification machines

autotest-rpc-client acl list -w autotest-dev -m bench0 -v
Name Description
Everyone
benchmarking_group Benchmark machines
Hosts:
 bench0, bench1, bench2, bench3, bench4
Users:
 user1, user2

Adding Hosts or Users to an ACL

autotest-rpc-client acl add help
usage: autotest-rpc-client acl add [options] <acls>

options:
 -h, --help show this help message and exit
 -g, --debug Print debugging information
 --kill-on-failure Stop at the first failure
 --parse Print the output using colon separated key=value
 fields
 -v, --verbose
 -w WEB_SERVER, --web=WEB_SERVER
 Specify the autotest server to talk to
 -a ACL_FLIST, --alist=ACL_FLIST
 File listing the ACLs
 -u USER, --user=USER Add USER(s) to the ACL
 --ulist=USER File containing users to add to the ACL
 -m MACHINE, --machine=MACHINE
 Add MACHINE(s) to the ACL
 --mlist=MACHINE File containing machines to add to the ACL

You must specify at least one ACL and one machine or user.

autotest-rpc-client acl add my_acl -u user0,user1 -v -w autotest-dev
Added to ACL my_acl user:
 user0, user1

cat machine_list
host0 host1
host2
host3,host4

autotest-rpc-client acl add my_acl --mlist machine_list -w autotest-dev
Added to ACL my_acl hosts:
 host0, host1, host2, host3, host4

autotest-rpc-client acl list -w autotest-dev -v my*
Name Description
my_acl For testing
Hosts:
 host0, host1, host2, host3, host4
Users:
 user0, user1

Note the usage of wildcard to specify the ACL in the last example:
my*

Removing Hosts or Users from an ACL

autotest-rpc-client acl rm help
usage: autotest-rpc-client acl rm [options] <acls>

options:
 -h, --help show this help message and exit
 -g, --debug Print debugging information
 --kill-on-failure Stop at the first failure
 --parse Print the output using colon separated key=value
 fields
 -v, --verbose
 -w WEB_SERVER, --web=WEB_SERVER
 Specify the autotest server to talk to
 -a ACL_FLIST, --alist=ACL_FLIST
 File listing the ACLs
 -u USER, --user=USER Remove USER(s) from the ACL
 --ulist=USER File containing users to remove from the ACL
 -m MACHINE, --machine=MACHINE
 Remove MACHINE(s) from the ACL
 --mlist=MACHINE File containing machines to remove from the ACL

The options are the same than for adding hosts or users. You must
specify at least one ACL and one machine or user.

autotest-rpc-client acl rm my_acl -m host3 -w autotest-dev
Removed from ACL my_acl host:
 host3

autotest-rpc-client acl rm my_acl -u user0 -v -w autotest-dev
Removed from ACL my_acl user:
 user0

autotest-rpc-client acl list -w autotest-dev -v my_*
Name Description
my_acl For testing
Hosts:
 host0, host1, host2, host4
Users:
 user1

autotest-rpc-client acl delete my_acl -w autotest-dev
Deleted ACL:
 my_acl

Possible errors and troubleshooting

In case of error, add the -v option to gather more information.

Duplicate ACL:

autotest-rpc-client acl create my_acl -d "For testing" -w autotest-dev
Operation add_acl_group failed for: my_acl

autotest-rpc-client acl create my_acl -d "For testing" -w autotest-dev -v
Operation add_acl_group failed for: my_acl
 ValidationError: {'name': 'This value must be unique (my_acl)'}

Adding an unknown user or host:

autotest-rpc-client acl add my_acl -u foo
Operation acl_group_add_users failed for: my_acl (foo)

autotest-rpc-client acl add my_acl -u foo -v
Operation acl_group_add_users failed for: my_acl (foo)
 DoesNotExist: User matching query does not exist.

Removing an ACL requires that you are part of this ACL:

autotest-rpc-client acl delete my_acl -w autotest-dev
Operation delete_acl_group failed for: my_acl

autotest-rpc-client acl delete my_acl -w autotest-dev -v
Operation delete_acl_group failed for: my_acl
 AclAccessViolation: You do not have access to my_acl

Adding yourself to the ACL:
autotest-rpc-client acl add -u mylogin my_acl -w autotest-dev
Added to ACL my_acl user:
 mylogin

autotest-rpc-client acl delete my_acl -w autotest-dev
Deleted ACL:
 my_acl

Host Management - autotest-rpc-client host

NOTE: THIS IS ONLY PARTIALLY DONE.

The following actions are available to manage hosts:

autotest-rpc-client host help
Usage: autotest-rpc-client host [create|delete|list|stat|mod|jobs] [options] <hosts>

Options:
 -h, --help show this help message and exit
 -g, --debug Print debugging information
 --kill-on-failure Stop at the first failure
 --parse Print the output using colon separated key=value
 fields
 -v, --verbose
 -w WEB_SERVER, --web=WEB_SERVER
 Specify the autotest server to talk to
 -M MACHINE_FLIST, --mlist=MACHINE_FLIST
 File listing the machines

Creating a Host

autotest-rpc-client host create help
usage: autotest-rpc-client host create [options] <hosts>

options:
 -h, --help show this help message and exit
 -g, --debug Print debugging information
 --kill-on-failure Stop at the first failure
 --parse Print the output using colon separated key=value
 fields
 -v, --verbose
 -w WEB_SERVER, --web=WEB_SERVER
 Specify the autotest server to talk to
 --mlist=MACHINE_FLIST
 File listing the machines
 -l, --lock Create the hosts as locked
 -u, --unlock Create the hosts as unlocked (default)
 -t PLATFORM, --platform=PLATFORM
 Sets the platform label
 -b LABELS, --labels=LABELS
 Comma separated list of labels
 --blist=LABEL_FLIST File listing the labels
 -a ACLS, --acls=ACLS Comma separated list of ACLs
 --alist=ACL_FLIST File listing the acls

Multiple hosts can be created with one command. The hostname(s) can be
specified on the command line or in a file using the --mlist option.

You can specify the platform type, labels and ACLs for all the newly
added hosts. If you want the hosts to be locked, specify --locked
flag. The scheduler will not assign jobs to a locked host.

cat /tmp/my_machines
host0
host1

Create 2 hosts, locked and add them to the my_acl ACL.
autotest-rpc-client host create --mlist /tmp/my_machines -a my_acl -l
Added hosts:
 host0, host1

Deleting a Host

autotest-rpc-client host delete help
usage: autotest-rpc-client host delete [options] <hosts>

options:
 -h, --help show this help message and exit
 -g, --debug Print debugging information
 --kill-on-failure Stop at the first failure
 --parse Print the output using colon separated key=value
 fields
 -v, --verbose
 -w WEB_SERVER, --web=WEB_SERVER
 Specify the autotest server to talk to
 --mlist=MACHINE_FLIST
 File listing the machines

Multiple hosts can be deleted with one CLI. The hostname(s) can be
specified on the command line or in a file using the --mlist option.

The list can be comma or space separated.
autotest-rpc-client host delete host1,host0 host2
Deleted hosts:
 host0, host1, host2

Listing Hosts

autotest-rpc-client host list help
Usage: autotest-rpc-client host list [options] <hosts>

Options:
 -h, --help show this help message and exit
 -g, --debug Print debugging information
 --kill-on-failure Stop at the first failure
 --parse Print the output using colon separated key=value
 fields
 -v, --verbose
 -w WEB_SERVER, --web=WEB_SERVER
 Specify the autotest server to talk to
 -M MACHINE_FLIST, --mlist=MACHINE_FLIST
 File listing the machines
 -b LABEL, --label=LABEL
 Only list hosts with this label
 -s STATUS, --status=STATUS
 Only list hosts with this status
 -a ACL, --acl=ACL Only list hosts within this ACL
 -u USER, --user=USER Only list hosts available to this user

You can which host(s) you want to display using a combination of options
and wildcards.

List all the hosts
autotest-rpc-client host list
Host Status Locked Platform Labels
host1 Ready True label1
host0 Ready True label0
mach0 Ready True
mach1 Ready True

Only hosts starting with ho
autotest-rpc-client host list ho*
Host Status Locked Platform Labels
host1 Ready True label1
host0 Ready True label0

Only hosts having the label0 label
autotest-rpc-client host list -b label0
Host Status Locked Platform Labels
host0 Ready True label0

Only hosts having a label starting with lab
autotest-rpc-client host list -b lab*
Host Status Locked Platform Labels
host1 Ready True label1
host0 Ready True label0

Only hosts starting with ho and having a label starting with la
autotest-rpc-client host list -b la* ho*
Host Status Locked Platform Labels
host1 Ready True label1
host0 Ready True label0

Getting Hosts Status

autotest-rpc-client host stat help
Usage: autotest-rpc-client host stat [options] <hosts>

Options:
 -h, --help show this help message and exit
 -g, --debug Print debugging information
 --kill-on-failure Stop at the first failure
 --parse Print the output using colon separated key=value
 fields
 -v, --verbose
 -w WEB_SERVER, --web=WEB_SERVER
 Specify the autotest server to talk to
 -M MACHINE_FLIST, --mlist=MACHINE_FLIST

To display host information:

autotest-rpc-client host stat host0

Host: host0
Platform: x386
Status: Repair Failed
Locked: False
Locked by: None
Locked time: None
Protection: Repair filesystem only

ACLs:
Id Name
110 acl0
136 acl1

Labels:
Id Name
392 standard_config
428 my_machines

Modifying Hosts Status

autotest-rpc-client host mod help
Usage: autotest-rpc-client host mod [options] <hosts>

Options:
 -h, --help show this help message and exit
 -g, --debug Print debugging information
 --kill-on-failure Stop at the first failure
 --parse Print the output using colon separated key=value
 fields
 -v, --verbose
 -w WEB_SERVER, --web=WEB_SERVER
 Specify the autotest server to talk to
 -M MACHINE_FLIST, --mlist=MACHINE_FLIST
 File listing the machines
 -y, --ready Mark this host ready
 -d, --dead Mark this host dead
 -l, --lock Lock hosts
 -u, --unlock Unlock hosts
 -p PROTECTION, --protection=PROTECTION
 Set the protection level on a host. Must be one of:
 "Repair filesystem only", "No protection", or "Do not
 repair"

You can change the various states of the machines:

Lock all ho* hosts:
autotest-rpc-client host mod -l ho*
Locked hosts:
 host0, host1

Hosts have been repaired, put them back in the pool:
autotest-rpc-client host mod --ready host0
Set status to Ready for host:
 host0

Job Management - autotest-rpc-client job

The following actions are used to manage jobs:

autotest-rpc-client job help
usage: autotest-rpc-client job [create|list|stat|abort] [options] <job_ids>

options:
 -h, --help show this help message and exit
 -g, --debug Print debugging information
 --kill-on-failure Stop at the first failure
 --parse Print the output using colon separated key=value
 fields
 -v, --verbose
 -w WEB_SERVER, --web=WEB_SERVER
 Specify the autotest server to talk to

Creating a Job

autotest-rpc-client job create help
usage: autotest-rpc-client job create [options] job_name

options:
 -h, --help show this help message and exit
 -g, --debug Print debugging information
 --kill-on-failure Stop at the first failure
 --parse Print the output using colon separated key=value
 fields
 -v, --verbose
 -w WEB_SERVER, --web=WEB_SERVER
 Specify the autotest server to talk to
 -p PRIORITY, --priority=PRIORITY
 Job priority (low, medium, high, urgent),
 default=medium
 -y, --synchronous Make the job synchronous
 -c, --container Run this client job in a container
 -f FILE, --control-file=FILE
 use this control file
 -s, --server This is server-side job
 -t TESTS, --tests=TESTS
 Run a job with these tests
 -k KERNEL, --kernel=KERNEL
 Install kernel from this URL before beginning job
 -m MACHINE, --machine=MACHINE
 List of machines to run on (hostnames or n*label)
 -M MACHINE_FLIST, --mlist=MACHINE_FLIST
 File listing machines to use

You can only create one job at a time. The job will be assigned the name
job_name and will be run on the machine(s) specified using the
-m|--machine|-M|--mlist options.

The machines can be specified using their hostnames or if you are just
interested in a specific group of machines, you can use any arbitrary label
you have defined, both platform and non-platform.

The syntax for those is: n*label to run on n
machines of type label e.g., 2*Xeon,3*lab1,hostprovisioning.
You can omit n if n equals 1.

The options are:

	-p|--priority sets the job scheduling priority to Low, Medium
(default), High or Urgent.

	-s|--server specifies if the job is a server job, or a client job
(default). A server job must specify a control file using the
--control-file option.

	-y|--synchronous specifies if the job is synchronous or
asynchronous (default).

	-k|--kernel=<file> specifies the URL of a kernel to install
before running the test(s).

	-c|--container runs the test(s) in a container. This is only
valid for client-side jobs.

The tests can be specified in 2 mutually exclusive ways:

	-f|--control-file=FILE will run the job described in the control
file FILE,

	-t|--tests=a,b,c will create a control file to run the tests a,
b, and c.

One of these 2 options must be present.

The control file must be specified if your job is:

	synchronous, or

	a server-side job.

The --control-file option cannot be used with:

	the --kernel option.

	the --container option.

If you want to do any of those, code it in the control file itself.

You can find the list of existing tests using autotest-rpc-client test list.

Create a job my_test using known tests on host0:
autotest-rpc-client job create --test dbench,kernbench -m host0 my_test
Created job:
 my_test (id 6749)

Create a server job using a custom control file on host0:
cat ./control
job.run_test('sleeptest')

autotest-rpc-client job create --server -f ./control -m host0 my_test_ctrl_file
Created job:
 my_test_ctrl_file (id 6751)

Create a job on 2 Xeon machines, 3 Athlon and 1 x286:
Find the platform labels:
autotest-rpc-client label list -t
Name Valid
Xeon True
Athlon True
x286 True

autotest-rpc-client job create --test kernbench -m 2*Xeon,3*Athlon,*x286, test_on_meta_hosts
Created job:
 test_on_meta_hosts (id 6761)

Listing Jobs

autotest-rpc-client job list help
usage: autotest-rpc-client job list [options] <job_ids>

options:
 -h, --help show this help message and exit
 -g, --debug Print debugging information
 --kill-on-failure Stop at the first failure
 --parse Print the output using colon separated key=value
 fields
 -v, --verbose
 -w WEB_SERVER, --web=WEB_SERVER
 Specify the autotest server to talk to
 -a, --all List jobs for all users.
 -r, --running List only running jobs
 -u USER, --user=USER List jobs for given user

You can list all the jobs, or filter on specific users, IDs or job
names. You can use the * wildcard for the job_name filter.

List all my jobs
autotest-rpc-client job list
Id Owner Name Status Counts
3590 user0 Thourough test Aborted:31, Completed:128, Failed:74
6626 user0 Job Completed:1
6634 user0 Job name with spaces Aborted:1
6749 user0 my_test Queued:1
6751 user0 my_test_ctrl_file Queued:1

List all jobs starting with 'my'
autotest-rpc-client job list my*
Id Owner Name Status Counts
1646 user1 myjob Completed:2
2702 user2 mytestburnin3 Aborted:1
6749 user0 my_test Queued:1
6751 user0 my_test_ctrl_file Queued:1

Getting Jobs Status

autotest-rpc-client job stat help
usage: autotest-rpc-client job stat [options] <job_ids>

options:
 -h, --help show this help message and exit
 -g, --debug Print debugging information
 --kill-on-failure Stop at the first failure
 --parse Print the output using colon separated key=value
 fields
 -v, --verbose
 -w WEB_SERVER, --web=WEB_SERVER
 Specify the autotest server to talk to
 -f, --control-file Display the control file

At least one job ID or name must be specified. The * wildcard can be
used for the job name but not for the job ID.

Get status of the previously queued jobs. Note the hostname in this output:
autotest-rpc-client job stat my_test*
Id Name Priority Status Counts Host Status
6749 my_test Medium Queued:1 Queued:host0
6751 my_test_ctrl_file Medium Queued:1 Queued:host0

The stats on a meta host job will show the hostname once the scheduler mapped the platform label to available hosts:

autotest-rpc-client job stat 6761
Id Name Priority Status Counts Host Status
6761 test_on_meta_hosts Medium Queued:4, Running:1 Running:host42

Aborting Jobs

autotest-rpc-client job abort help
usage: autotest-rpc-client job abort [options] <job_ids>

options:
 -h, --help show this help message and exit
 -g, --debug Print debugging information
 --kill-on-failure Stop at the first failure
 --parse Print the output using colon separated key=value
 fields
 -v, --verbose
 -w WEB_SERVER, --web=WEB_SERVER
 Specify the autotest server to talk to

You must specify at least one job ID. You cannot use the job name.

autotest-rpc-client job abort 6749,6751 6761
Aborted jobs:
 6749, 6751, 6761

Label Management - autotest-rpc-client label

The following actions are available to manage the labels:

autotest-rpc-client label help
usage: autotest-rpc-client label [create|delete|list|add|remove] [options] <labels>

options:
 -h, --help show this help message and exit
 -g, --debug Print debugging information
 --kill-on-failure Stop at the first failure
 --parse Print the output using colon separated key=value
 fields
 -v, --verbose
 -w WEB_SERVER, --web=WEB_SERVER
 Specify the autotest server to talk to
 -B LABEL_FLIST, --blist=LABEL_FLIST
 File listing the labels

Creating a label

autotest-rpc-client label create help
usage: autotest-rpc-client label create [options] <labels>

options:
 -h, --help show this help message and exit
 -g, --debug Print debugging information
 --kill-on-failure Stop at the first failure
 --parse Print the output using colon separated key=value
 fields
 -v, --verbose
 -w WEB_SERVER, --web=WEB_SERVER
 Specify the autotest server to talk to
 -B LABEL_FLIST, --blist=LABEL_FLIST
 File listing the labels
 -t, --platform To create this label as a platform

You can create multiple labels at a time. They can be specified on the
command line or in a file, using the -B|--blist option.

autotest-rpc-client label create my_label
Created label:
 my_label
autotest-rpc-client label create label0 label1
Created label:
 label0, label1

Deleting a label

autotest-rpc-client label delete help
usage: autotest-rpc-client label delete [options] <labels>

options:
 -h, --help show this help message and exit
 -g, --debug Print debugging information
 --kill-on-failure Stop at the first failure
 --parse Print the output using colon separated key=value
 fields
 -v, --verbose
 -w WEB_SERVER, --web=WEB_SERVER
 Specify the autotest server to talk to
 -B LABEL_FLIST, --blist=LABEL_FLIST
 File listing the labels

You can delete multiple labels at a time. They can be specified on the
command line or in a file, using the -b|--blist option.

autotest-rpc-client label delete label0,label1
Deleted labels:
 label0, label1

Listing labels

autotest-rpc-client label list help
usage: autotest-rpc-client label list [options] <labels>

options:
 -h, --help show this help message and exit
 -g, --debug Print debugging information
 --kill-on-failure Stop at the first failure
 --parse Print the output using colon separated key=value
 fields
 -v, --verbose
 -w WEB_SERVER, --web=WEB_SERVER
 Specify the autotest server to talk to
 -B LABEL_FLIST, --blist=LABEL_FLIST
 File listing the labels
 -t, --platform-only Display only platform labels
 -d, --valid-only Display only valid labels
 -a, --all Display both normal & platform labels
 -m MACHINE, --machine=MACHINE
 List LABELs of MACHINE

You can list all the labels, or filter on specific labels or machines
(exclusively).

Show all labels
autotest-rpc-client label list
Name Valid
label0 True
label1 True

Display labels that host host0 is tagged with
autotest-rpc-client label list label0 -m host0
Name Valid
label0 True

Adding Hosts to a Label

autotest-rpc-client label add help
usage: autotest-rpc-client label add [options] <labels>

options:
 -h, --help show this help message and exit
 -g, --debug Print debugging information
 --kill-on-failure Stop at the first failure
 --parse Print the output using colon separated key=value
 fields
 -v, --verbose
 -w WEB_SERVER, --web=WEB_SERVER
 Specify the autotest server to talk to
 -B LABEL_FLIST, --blist=LABEL_FLIST
 File listing the labels
 -m MACHINE, --machine=MACHINE
 Add MACHINE(s) to the LABEL
 -M MACHINE_FLIST, --mlist=MACHINE_FLIST
 File containing machines to add to the LABEL

You must specify at least one label and one machine.

Add hosts host0 and host1 to 'my_label'
autotest-rpc-client label add my_label -m host0,host1
Added to label my_label hosts:
 host0, host1

Removing Hosts from a Label

autotest-rpc-client label remove help
usage: autotest-rpc-client label remove [options] <labels>

options:
 -h, --help show this help message and exit
 -g, --debug Print debugging information
 --kill-on-failure Stop at the first failure
 --parse Print the output using colon separated key=value
 fields
 -v, --verbose
 -w WEB_SERVER, --web=WEB_SERVER
 Specify the autotest server to talk to
 -B LABEL_FLIST, --blist=LABEL_FLIST
 File listing the labels
 -m MACHINE, --machine=MACHINE
 Remove MACHINE(s) from the LABEL
 -M MACHINE_FLIST, --mlist=MACHINE_FLIST
 File containing machines to remove from the LABEL

The options are the same than for adding hosts. You must specify at
least one label and one machine.

cat my_machines
host0
host1,host2
autotest-rpc-client label rm my_label --mlist my_machines
Removed from label my_label hosts:
 host0, host1, host2

Completely delete the LABEL.
autotest-rpc-client label delete my_label
Deleted label:
 my_label

Possible errors and troubleshooting

Duplicate label: {{{# autotest-rpc-client label create my_label Operation add_label
failed:

ValidationError?: {'name': 'This value must be unique (my_label)'}

}}}

Adding an unknown host:

autotest-rpc-client label add my_label -m host20,host21
Operation label_add_hosts failed:
 DoesNotExist: Host matching query does not exist. (my_label (host20,host21))}}}

Test Management - autotest-rpc-client test

The following actions are available to manage the tests:

autotest-rpc-client test help
usage: autotest-rpc-client test list [options] [tests]

options:
 -h, --help show this help message and exit
 -g, --debug Print debugging information
 --kill-on-failure Stop at the first failure
 --parse Print the output using colon separated key=value
 fields
 -v, --verbose
 -w WEB_SERVER, --web=WEB_SERVER
 Specify the autotest server to talk to
 -T TEST_FLIST, --tlist=TEST_FLIST
 File listing the tests

Listing Tests

autotest-rpc-client test list help
usage: autotest-rpc-client test list [options] [tests]

options:
 -h, --help show this help message and exit
 -g, --debug Print debugging information
 --kill-on-failure Stop at the first failure
 --parse Print the output using colon separated key=value
 fields
 -v, --verbose
 -w WEB_SERVER, --web=WEB_SERVER
 Specify the autotest server to talk to
 -T TEST_FLIST, --tlist=TEST_FLIST
 File listing the tests
 -d, --description Display the test descriptions

You can list all the tests, or specify a few you’d like information on.

autotest-rpc-client test list
Name Test Type Test Class
sleeptest Client Canned Test Sets
dbench Client Canned Test Sets
Kernbench Client Canned Test Sets

Specifying some test names, with descriptions:
autotest-rpc-client test list Kernbench,dbench -d
Name Test Type Test Class Description
Kernbench Client Canned Test Sets unknown
dbench Client Canned Test Sets dbench is one of our standard kernel stress tests. It produces filesystem
load like netbench originally did, but involves no network system calls.
Its results include throughput rates, which can be used for performance
analysis.

More information on dbench can be found here:
http://samba.org/ftp/tridge/dbench/README

User Management - autotest-rpc-client user

The following actions are available to manage users:

autotest-rpc-client user help
usage: autotest-rpc-client user list [options] <users>

options:
 -h, --help show this help message and exit
 -g, --debug Print debugging information
 --kill-on-failure Stop at the first failure
 --parse Print the output using colon separated key=value
 fields
 -v, --verbose
 -w WEB_SERVER, --web=WEB_SERVER
 Specify the autotest server to talk to
 -u USER_FLIST, --ulist=USER_FLIST
 File listing the users

Listing users

autotest-rpc-client user list help
usage: autotest-rpc-client user list [options] <users>

options:
 -h, --help show this help message and exit
 -g, --debug Print debugging information
 --kill-on-failure Stop at the first failure
 --parse Print the output using colon separated key=value
 fields
 -v, --verbose
 -w WEB_SERVER, --web=WEB_SERVER
 Specify the autotest server to talk to
 -u USER_FLIST, --ulist=USER_FLIST
 File listing the users
 -a ACL, --acl=ACL Only list users within this ACL
 -l ACCESS_LEVEL, --access_level=ACCESS_LEVEL
 Only list users at this access level

You can list all the users or filter on specific users, ACLs or access
levels. You can use wildcards for those options. The verbose option
displays the access level.

Show all users
autotest-rpc-client user list
Login
user0
user1
me_too
you_as_well

Show all users starting with u
autotest-rpc-client user list u* -v
Id Login Access Level
3 user0 0
7 user1 1

Show all users starting with u and access level 0.
autotest-rpc-client user list u* -v -l 0
Id Login Access Level
3 user0 0

Show all users belonging to the ACL acl0
autotest-rpc-client user list -a acl0
Login
user1
metoo

Frontend Database (autotest_web)

The AFE frontend and the scheduler both work from the “autotest_web”
database.

[image: ../../../_images/frontend.png]

	Test: a test than can be run as part of a job. Each row corresponds
to a control file, most often found at (client|server)/tests/<test
name>/control, but not always.

	User: a user of the system.

	Host: a machine on which tests can be run.

	AclGroup: access control groups. Each group is in a many-to-many
relationship with users and hosts and gives users in that group
permission to run jobs on hosts in the same group.

	Label: a label describing a type of host, such as “intel” or
“regression_testing_machines”. These help users schedule jobs on
particular groups of machines.

	Job: a logical job consists of a set of hosts and a control file to
run on those hosts. It can be tracked throughout the system by its
ID. A row in this table contains the control file for the job and
information about how it should be run.

	HostQueueEntry: this table provides a many-to-many relationship
between jobs and hosts. It is used to keep track of the hosts on
which a job is scheduled to run, and by the scheduler to keep track
of the progress of those runs. It can also represent a “metahost” for
a job, which indicates that a job is scheduled to run on any machine
from a particular label.

	IneligibleHostQueue: this table also provides a many-to-many
relationship between jobs and hosts. It is used to indicate which
hosts a job has already been scheduled against and is used by the
scheduler in assigning metahosts.

Understanding the TKO Results Database

This page will (hopefully) help you understand how results are
structured in the Autotest results database, and how you can best
structure results for your test.

Structure of test results

The core results entity produced when you run a tests is a Test
Result. (The DB model name is simply “Test”, but “Test Result” is more
clear, so I’m going to use that term here.) Each Test Result has a
number of fields, most importantly the name of that test that ran and
the status of the test outcome. Test Results also include timestamps and
links to a few related objects, including the kernel and machine on
which the test ran, and the job that ran the test. Each of these objects
includes other fields - see TKO database for the full list.

Each Test Result can also have any number of Test Attributes, each
of which is a key-value pair of strings. Note that some Test Attributes
are included with each test automatically, including information on test
parameters and machine sysinfo.

Furthermore, each Test Result can have any number of Iterations,
indexed from zero. These are primarily for use by performance tests.

	Each Iteration can have any number of Iteration Attributes, each
of which is a key-value pair of strings.

	Each Iteration can also have any number of Iteration Results,
each of which is a key-value pair with floating-point values (and
string keys, as usual). This is the only way to record numerical data
for a test. It is used for all performance tests.

Note that, despite the names, both of these kinds of iteration keyvals
are intended to describe results-oriented information. The only
difference is that one holds string-valued results while the other holds
numerical results. Neither type of iteration keyval is intended to hold
information about how the test ran (such as test parameters). By design,
all iterations within a test should run the exact same way. The only
intended purpose of iterations is to gather more samples for statistical
purposes. If you want to run a test multiple times varying parameters,
you should create multiple Test Results (see below).

To summarize:

	Job
	Test Results
	Test Attributes (string key -> string value)

	Iterations (indexed from 0)
	Iteration Attributes (string key -> string value)

	Iteration Results (string key -> float value)

How are test results created?

Each call to job.run_test() implicitly creates one Test Result. The
status of the Test Result is determined by what, if any, exception was
raised (and escaped) during test execution. Any calls to record keyvals
within the test will be associated with the Test Result for that call to
run_test().

If you want to create many Test Result objects, you must have code to
call job.run_test() many times. This code must reside in the control
file, or in a library called by the control file, but not within the
test class itself (since everything in the test class executes within a
call to run_test()).

A new issue arises when running the same test multiple times within a
job. This will generate many Test Results with the same test name, but
there must be a unique identifier for each Test Result (other than the
database ID). This brings another Test Result field into play –
subdir, the subdirectory containing the result files for that Test
Result. subdir is normally equal to the test name, but this field
must be unique among all Test Results for a job. When running a test
multiple times, unique subdir``s are usually achieved by passing a
unique ``tag with each call to job.run_test() for a particular
test. The subdir then becomes $test_name.$tag.

Further reading

	AutotestApi
explains how each of these keyvals can be recorded by test code using
Test APIs.

	TkoDatabase illustrates the database schema.
Note that it does not map directly onto these concepts. In
particular, there’s no table for iterations themselves, only the
iteration keyvals. The existence of iterations themselves is
implicit.

	Keyval <../local/Keyval> explains the placement and format of keyval
files within the results directories. These are written by Autoserv
and read by the Parser to fill in the database.

TKO results database

The TKO results database holds results of test runs. The parser puts
data into it and the TKO web interface allows users to view data from
it.

[image: ../../../_images/new_tko.png]

	The tests table is the core of the DB and contains a row for each
test run.

	A job in the jobs table corresponds to a single execution
instance of autoserv. Each job can have many tests.

	The test_attributes, iteration_attributes, and
iteration_result hold keyval information about tests.

	The status table is simply an enumeration of tests status values,
i.e. completed, failed, aborted, etc.

	The kernels and patches tables hold kernel information for
kernels against which tests are run.

	The machines tables holds information on machines on which tests
are run.

MySQL replication

Introduction

If you’re a heavy user of Autotest and its reporting/graphing
functionality its possible that you’ve experienced slow downs that
database slave(s) could mitigate. There are lots of guides on the
internet for doing MySQL replication. This presents just one possible
way to set it up.

Notes on replication:

	Only read-only operations can go through the slave. At the moment,
only the new TKO interface supports splitting read-only and
read-write traffic up between servers.

	MySQL replicates by replaying SQL statements. This means that it is
possible to construct SQL statements that will execute
non-deterministically on replicas. None of the commands Autotest runs
should have this problem, but you need to know it’s possible. This
also means that you might want to verify the consistency of the slave
database once in a while.

	MySQL replication happens in one thread. In highly parallelizable,
write heavy workloads, the slave will probably fall behind. In
practice this is pretty much never an issue.

	...there’s lots of other caveats. If you’re still reading, you might
want to check out
http://oreilly.com/catalog/9780596101718/

Preparing the Master

First of all, you’re going to need to set up the binary log. All queries
which might affect the database (i.e. not SELECTs) will be written to
this log. Replication threads will then read the file and send updates
to the database slaves. Because it’s in a file, this also means that if
a slave goes off line for a while (under the limit we’ll set in a
moment), it can easily re-sync later.

Open the /etc/mysql/my.cnf file with root permissions (so probably with
sudo).

Uncomment out (or add) the following lines in the [mysqld] section of
the file.

server-id = SOMETHING_UNIQUE
log_bin = /var/log/mysql/mysql-bin.log
expire_logs_days = 10
max_binlog_size = 100M

The server-id needs to be an unique 32 bit int but otherwise doesn’t
matter. The log_bin says to use binary logging and specifies the
prefix used for log files. The log files are rotated when they become
max_binlog_size and are kept for expire_logs_days days.

Restart the mysql server and log into the prompt with the mysql
command. Now create a user for replication:

GRANT REPLICATION SLAVE ON *.* TO 'slave_user'@'%' IDENTIFIED BY 'some_password';
FLUSH PRIVILEGES;

Creating a Snapshot

MySQL has a built in command to sync a slave to a master without any
existing data, but this isn’t useful in a production environment because
it locks all the tables on the master for an extended period of time.
The following is a good compromise of downtime (it’ll lock things for a
couple minutes) and ease of use. If you can’t have any down time,
consult other resources and good luck. :-)

The following command will dump all databases to a file called
/tmp/backup.sql. It uses extended inserts which cuts down on the file
size, but makes the file (a bit) less portable. The –master-data tells
it to write what the current bin-log location is to the beginning of the
file and causes the database to be read-only locked during the duration.

mysqldump -uroot -p --all-databases --master-data --extended-insert > /tmp/backup.sql

Setting up the Slave

On the database slave, simply copy over the SQL dump you created in the
last step and (assuming the dump is in /tmp/backup.sql):

mysql -uroot -p < /tmp/backup.sql

Now edit your /etc/mysql/my.cnf. Add the following lines under the
[mysqld] section:

server-id = SOMETHING_UNIQUE
log_bin = /var/log/mysql/mysql-bin.log
expire_logs_days = 10
max_binlog_size = 100M
read_only = 1

The read_only parameter makes it so that only DB slave processes and
those with SUPER access can modify the database. The log_bin turns on
the binary logging so that other servers can be chained off of this
replica.

If you’re using a debian based distro, you’ll need to copy over the
login data from the /etc/mysql/debian.cnf of the master to the slave.

Stop and start mysql.

sudo /etc/init.d/mysql stop
sudo /etc/init.d/mysql start

Out of the SQL dump we loaded earlier, get the master position via

grep 'CHANGE MASTER' /tmp/backup.sql | head -n1

Open up a mysql root prompt and run the following command (modified for
your local setup). After that, start the slave thread and show the
current status.

CHANGE MASTER TO MASTER_HOST='some.host.com', MASTER_USER='slave_user', MASTER_PASSWORD='some_password', MASTER_LOG_FILE='from the output above', MASTER_LOG_POS=ditto;
START SLAVE;
SHOW SLAVE STATUS\G;

On your database master, you can run SHOW MASTER STATUS;’ and verify
that the slave is up to date (or is currently catching up).

RPC Server

The Autotest RPC Server, also known as the frontend, is a Django based
application that provides:

	The Database Objects (defined by Django Models [http://docs.djangoproject.com/en/dev/topics/db/models/#module-django.db.models])

	A remoting interface using the JSON-RPC protocol

	The Administration Web Interface [http://docs.djangoproject.com/en/dev/ref/contrib/admin/#module-django.contrib.admin] that Django
gives us for free

We’ll start by taking a look at the Database the Models and the database
structure that they generate.

	Models
	Model Logic

	AFE Models

	AFE Exceptions

	TKO Models

	RPC Interface
	AFE RPC Interface

	Custom RPC Scripts

	Policy for changing the frontend(AFE) and TKO RPC protocols

Models

The Database Models play a major role in the RPC server. The most important
things they do:

	Define and create the database structure on the Autotest Relational Database

	Provide a object like uniform API for the Database entries

Note

For historical reasons, the RPC server is composed of two different
applications, AFE and TKO. Because of that, the models are also defined in
two different modules.

These may soon be united into a single application, specially their model
definition. For now, keep in mind that the model you are looking for may
be in one of two different places.

	Model Logic
	ModelWithInvalid

	AFE Models
	AtomicGroup

	Job

	Label

	Drone

	DroneSet

	User

	Host

	HostAttribute

	Test

	TestParameter

	Profiler

	AclGroup

	Kernel

	ParameterizedJob

	ParameterizedJobProfiler

	ParameterizedJobProfilerParameter

	ParameterizedJobParameter

	Job

	AFE Exceptions

	TKO Models
	Machine

	Kernel

	Patch

	Status

	Job

	JobKeyval

	Test

Model Logic

Autotest extends the base Django Database models with some custom logic.

ModelWithInvalid

AFE Models

AFE stands for Autotest Front End. It’s an application that provides access
to the core of Autotest definitions, such as Hosts, Tests, Jobs, etc.

For the classes that inherit from django.db.models.Model [http://docs.djangoproject.com/en/dev/ref/models/instances/#django.db.models.Model] some of the
attributes documented here are instances from one of the many
django.db.models.fields [http://docs.djangoproject.com/en/dev/ref/models/fields/#module-django.db.models.fields] classes and will be mapped into a field on the
relational database.

AtomicGroup

Job

Label

Drone

DroneSet

User

Host

HostAttribute

Test

TestParameter

Profiler

AclGroup

Kernel

ParameterizedJob

ParameterizedJobProfiler

ParameterizedJobProfilerParameter

ParameterizedJobParameter

Job

AFE Exceptions

Besides persistence, Models also provide some logic. And as such, some custom
error conditions exist.

TKO Models

TKO is the autotest application dedicated to storing and querying test results.

Machine

Kernel

Patch

Status

Job

JobKeyval

Test

RPC Interface

Functions exposed over the RPC interface.

Note

For historical reasons, the RPC server is composed of two different
applications, AFE and TKO.

	AFE RPC Interface

AFE RPC Interface

Custom RPC Scripts

This is a brief outline of how to use the TKO RPC interface to write
custom results analysis scripts in Python. Using the AFE RPC interface
is very similar.

Basically:

	make your script any place in the client with a common.py

	to import the rpc stuff you need do:

import common # pylint: disable=W0611
from autotest_lib.cli import rpc

	to create the object you need for making the rpc calls use “comm =
rpc.tko_comm()”; you can pass in a host name if you want to point at
something other than what’s in the global_config.ini file in your
client.

	you can get the test detail with code like:

test_views = comm.run("get_detailed_test_views", ...filters go here...)

The filters are basically django filters. I won’t go into much detail
here, the obvious ones you’d want to use are:

	job_tag__startswith - set it to something like “1234-” to get
data on job 1234

	hostname - if you want data for a specific hostname, set this

	test_name - if you want data for a specific test name, set this

So you could do something like:

test_views = comm.run("get_detailed_test_views", job_tag__startswith="1234-", hostname="myhost")

The test_views returned by that call is a list of dictionaries, one
dictionary for each test returned by the call. The main keys you’re
concerned with will be “attributes” and “iterations”.

attributes is a dictionary of all the test level keyvals - you can see
stuff like “sysinfo-uname” here.

iterations is a list of dictionaries, one for each iteration. Each
dictionary has two entries; an “attr” one, which is a dictionary of all
the key{attr}=value attributes in the test, and a “perf” one, which is a
dictionary of all the key{perf}=value attributes.

And...that’s basically how you access all that info. You make that call
and get a big list of dictionaries. Oh, and avoid calling it without
filters; trying to pull down data for every single test can be a bad
idea (depending on the size of your database).

Policy for changing the frontend(AFE) and TKO RPC protocols

Try to make any RPC protocol change so that it’s backwards compatible.
If there are good reasons not to make it backwards compatible then the
following procedure has to be followed:

	initial code changes have to be backwards compatible (so we end up
supporting both old and the new RPC API); existent RPC users in the
autotest code base have be already changed to use the new API

	to give enough time for external RPC users, an announcement about
this RPC change should go on the public mailing list

	after at least a month since the RPC API change announcement the
support for the old RPC API can be removed from the code

Web Frontend HOWTO

The Autotest web frontend can be used for

	browsing existing jobs

	viewing job details and getting to job results and log files

	submitting new jobs

	tracking hosts’ statuses

	managing (browsing, creating, modifying, and deleting) hosts, labels,
profilers, and ACL groups

When you first bring up the frontend, you’ll see something like this:

[image: ../../../_images/joblist.png]

Job List

The interface initially shows the Job List tab, which allows you to
browse existing jobs. The four links at the top filter jobs by status -
you can view only queued, running, or finished (which includes completed
and aborted) jobs, or view them all (the default). You can also filter
by job owner and job name. The initial view shows all jobs owned by you.
Most recently submitted jobs are displayed first.

The Hosts column shows how many hosts in each job are currently in each
state (see JobAndHostStatuses). You can use
the Refresh button at the top to refresh the list (it won’t refresh
itself). Clicking on a job in the list brings up the View Job tab for
the selected job.

You can select multiple jobs with the checkboxes on the left, or using
the links at the top of the table. You can then using the “Actions” menu
to operate on many jobs at once. Currently, this only allows you to
abort jobs.

View Job

The View Job tab shows details about a single job along with results and
a link to log files.

[image: ../../../_images/jobview.png]

The box at the top allows you to manually fetch a job by ID. The page
displays basic info about the job, an “Abort Job” button if the job has
not completed, and a “Clone Job” button to create a new job modeled
after the current job. Clone job will present three options:

	Reuse any similar hosts - if the original job use “run on any” hosts,
the new job will do the same, so that it could get assigned different
hosts.

	Reuse same specific hosts - the exact same set of hosts will be used,
even if the original job specific “run on any” hosts.

	Use failed and aborted hosts - uses the hosts have have been aborted,
or have failed the job in some way

Below this, the full contents of the job’s control file are displayed,
follow by job results. This consists of an embedded TKO spreadsheet for
the job with three links above:

	open in new window - to open the old TKO interface for the job.

	new results interface - to open the new TKO interface for the job.

	raw results logs - to bring up a listing of the job results
directory. This is often useful for debugging when things go wrong.

Finally, the table at the bottom shows all hosts on which the job was
scheduled and the current status of the job on each host (see
JobAndHostStatuses). Links are provided to
jump directly to the status log and debug logs for each host. In
addition, you can select individual hosts and abort them with the
Actions menu. You can clone the job on the selected hosts from the
Actions menu as well. Selecting no hosts and choosing “Clone job on
selected hosts” will clone the job without adding any hosts.

Create Job

This tab allows you to create and submit a new job.

[image: ../../../_images/createjob.png]

Create job parameters

	Job name can be any string.

	Priority affects how your job will be placed in the queue; higher
priority jobs with preempt lower priority ones that have not yet
started when the jobs are scheduled on the same machine.

	The kernel field allows you to specify a kernel to install on the
test machine before testing; leaving this field blank will leave out
the kernel install step. You can specify a URL pointing to a kernel
source tarball or a .rpm or .deb package. Site-specific extensions
are also possible.

	Timeout specifies the hours after job creation until the
scheduler will automatically abort the job if it hasn’t yet
completed.

	Max runtime specifies the hours after the job starts running
(Autoserv is executed) until the scheduler will automatically abort
the job if it hasn’t yet completed.

	Email List can contain a comma- or space-separated list of email
addresses which will be notified upon job completion.

	If Skip verify is checked, hosts won’t be verified before the job
is run. This is useful for machine reinstalls among other things.

	Reboot before determines whether hosts will be rebooted before
the job runs. If dirty means the host will be rebooted if it hasn’t
been rebooted since being added, being locked, or having the last job
run.

	Reboot after determines whether hosts will be rebooted after the
job runs. If all tests passed means the host won’t be rebooted if
any test within the job failed.

	If Include failed repair results is checked, when a machine fails
repair, “repair” and “verify” test entries will show up in TKO for
that machine, along with a SERVER_JOB entry. If unchecked, nothing
at all will show up in TKO for the failed machine.

	The Tests section contains a table allowing you to select a set
of client- or server-side tests to run. You can click on any test to
view its description. Your test selections, along with the kernel
field, are used to build the job’s control file.

	Profilers shows available profilers than can be enabled for your
job.

	Clicking View control file will display a box that shows the
control file being constructed from your choices. You may edit the
control file by hand by clicking Edit control file. This will
make the control file field editable, but disables the kernel input
and all test selector. If you want to go back and change your
selections in these inputs, you’ll need to revert your kernel
changes. When editing a control file, you have two additional
options. You shouldn’t have to edit these unless you know what you’re
doing.
	Client or Server - whether the control file should run on the
client-side or the server-side.

	Synchronous - if checked, the job will wait for all machines
to be ready and then run all machines in a single autoserv
instance. This is usually only necessary for multi-machine tests.

	The Available hosts and Selected hosts tables allow you to
select hosts on which to run the job. Individual hosts can be
selected and deselected by clicking on them. The filters at the top
of the Available hosts table can be used to narrow your selection,
just like in the Hosts tab. “Select visible” adds all hosts currently
visible in the Available hosts table. “Select all” adds all hosts
currently matching the filters.
	The Run on any box allows you to request that the job be run
on any machines from a given platform or label. The machines will
be automatically selected from the set of available machines when
the job is run.

	The One-time host(s) box allows you to enter a hostname (or
space-separated list of hostnames) that will be added to the
database just for the job, without leaving the machine available
for other jobs.

	Finally, the Submit Job button will attempt to submit your job,
and any errors will show up in red.

Host List

This tab allows you to browse all hosts in the system.

[image: ../../../_images/hostlist.png]

The table can be searched and filtered using the boxes at the top.
Clicking on a host brings you to the “View Host” tab for that host.

Additionally, you can force hosts to go into Verify by selecting them
and choosing “Reverify hosts” from the Actions menu.

View Host

[image: ../../../_images/hostview.png]

This tab shows detailed information for a particular host including a
list of all jobs queued, running and previously run on that host. It
additionally provides a link to the scheduler’s verify/repair logs for
the host.

User preferences

The user preferences tab allows you to set defaults for creating jobs.
See
WebFrontendHowTo#Createjobparameters.

	Reboot before and Reboot after control default values for the
corresponding options on the Create Job page.

	Show experimental tests will make the Create Job page show tests
that are marked as “experimental” in the control file.

Admin interface

Clicking the “Admin” link in the upper right corner takes you to the
admin interface for managing hosts, labels, profilers and ACL groups.
Tests may be managed through the admin interface as well, but the
preferred server setup is to use utils/test_importer.py to
automatically populate the DB with information from the test control
files themselves (see ControlRequirements
and utils/test_importer.py --help).

[image: ../../../_images/admin.png]

This is the built-in Django admin system. Here you can browse, create,
modify, and delete objects. The link in the upper right corner takes you
back to the frontend. The different objects types appear on the Admin
index page. Clicking on any object type takes you to a list of that
object type.

[image: ../../../_images/adminhostlist.png]

The list can be sorted, searched, and filtered. The link at the top
right allows you to create a new object, and clicking on any object
takes you to the edit page for that object.

[image: ../../../_images/hostedit.png]

From this page you can fill in the information in the fields and click
“Save” at the lower right corner to add or edit the object. You can also
delete the object using the link at the lower left corner.

For help on the meanings of different fields, see the database documentation.

Web Frontend Roadmap

There are currently two completely separate projects with Autotest that
might be called web frontends:

	the Autotest Frontend or AFE project is a GUI for managing jobs and
hosts, including creation of new jobs and tracking queued and running
jobs. It lives under the “frontend” directory. This is frequently
referred to as simply “the web frontend”.

	the TKO project is a GUI for results reporting. It allows the user to
view summarized test results across many jobs, filtered and grouped
by various categories. It lives under the “new_tko” directory.

AFE

There are a few medium-sized features we’d like to complete:

	Implement complete ACL support – partially done ACL support is
barely implemented right now – ACL-inaccessible hosts are hidden
from the user in the GUI host list, and meta-hosts are blocked from
being scheduled on inaccessible hosts. We need to add proper support
for blocking the scheduling of inaccessible hosts, including support
for superusers. We need ACL protection for aborting jobs and for
modifying hosts.

	Creating jobs using previous jobs as templates – done When the
“Requeue job” is clicked, instead of immediately creating a new job,
the user will be taken to the “Create Job” tab. All the info from the
old job will be filled in. The user will then have the option of
making changes before submitting the new job.

	Easier management of many items (jobs + host) – done Currently,
to abort many jobs, the user must click each job individually to go
to its job detail page and then click the “Abort job” button. We’d
like to allow the user to select many jobs in the job list page and
then abort them all at once. Similar functionality could be used on
the host list page to, for instance, send many hosts into repair.

	Better linking directly to raw logs (job + host logs) – done
Jobs are often triaged by looking at the raw results logs. The only
link to these from the frontend is the one “raw results logs” link on
the job detail page, which takes the user to the root results
directory for the job. The host queue entries table on the job detail
tab should contain links to the debug logs for each host, and the
host detail page should link to the host log for each host.

	Parsing and using information from control files - done The
frontend should be able to parse information such as test types and
descriptions from control files and put this information into the
database. The frontend should display or use this information as
appropriate. Most of it is already used or displayed, but some of
this could be improved, such as the display of test descriptions
(currently done with tooltips).

Larger features we’d like to have include:

	Host management features We’d like the Autotest frontend to have more
powerful features for managing a large pool of hosts, including
tracking of machine health and better support for machine repairs.

	Port admin interface to GWT Addition, modification and deletion of
hosts, labels and tests is currently done through the Django admin
interface. We’d like to port this functionality to GWT so that we can
better customize it and integrate it with the rest of the frontend.

TKO

See TkoWebRequirements for reference.

Stage 1

done Basic spreadsheet view including all features of old TKO
interface (or equivalent newer versions)

	SQL filtering conditions

	Row and column field selection

	Left-click default drilldown (single test cells go straight to logs
instead of test detail view)

	Floating headers

Stage 2

done Enhanced spreadsheet features

	Right-click menu with drilldown options (and table-wide actions menu
at top)

	Multiple cell selection

	Test labels

Stage 3

done Table view

	Column selection + ordering

	Grouping feature

	Left- and right-click actions

	Sorting

	Job triage options from spreadsheet view

Stage 4

never got implemented User-friendly filtering

	Filter widgets mode

	Filtering widgets for all fields

	Conversion to SQL with custom editing allowed

Longer term

Plotting functionality and test detail view both done

Configuring hosts on the Autotest server

How to configure your hosts in the Autotest service.

Hosts

Hosts must be added to the Autotest system before they can be used to
run tests. Hosts can be added through the one-time hosts interface,
but for repeated tests it’s better to add them to the system properly.
Hosts can be added through the admin interface
(WebFrontendHowTo) or the CLI
(CLIHowTo). Host options include:

	hostname – this is how the host will be identified in the
frontend and CLI and how Autotest will attempt to connect to the
host.

	locked – when a host is locked, no jobs will be scheduled on the
host. Existing jobs will continue to completion.

	protection – see HostProtections.

Labels

Labels can be applied to machines to indicates arbitrary features of
machines. The most common usage of labels is to indicate a machine’s
platform, but they can also be used to indicate machine capabilities or
anything else the user likes. Labels are displayed in the frontend but
also play an important role in
AdvancedJobScheduling.

	name – this is how the label will be identified in the frontend
and CLI

	kernel_config – deprecated this field is generally unused
and should be removed

	platform – true if this label indicates a platform type. This
option affects web frontend display only and has no effect on
scheduling.

	only_if_needed – see
AdvancedJobScheduling#Onlyifneededlabels.

ACLs

Access Control Lists restrict which users can perform certain actions on
machines. They are primarily used to prevent other users from running
jobs on a particular user’s machines. See
ACLBehavior for details on what ACLs control and
how they work.

Each ACL is associated with some group of users and some group of
machines. A user has ACL access to a machine if she is in any ACL group
with that machine. By default, all users and and machines are in the
“Everyone” ACL, which essentially makes a machine publicly shared in the
system.

Any user can create a new ACL using web frontend
(WebFrontendHowTo) or CLI
(CLIHowTo).

Atomic Groups

See
AdvancedJobScheduling#AtomicGroups

Setting a Graphing Filter

[image: ../../../_images/graphing_filter.png]

These filters manipulate the data displayed and analyzed in your plots
on the graphing interface. The [X] link next to each filter removes the
associated filter from the list (or clears it, if there is only one),
while the [Add Filter] link adds a new filter to the end of the list.

Interface Options

	all of / any of: Specify whether you want the data to satisfy all
or any of the filters you listed.

	database column (drop-down): Select the database column you are
going to be filtering on. See
Graphing Fields <../frontend/Web/GraphingFilters> for more
details.

	condition (textbox): Specify the condition you want to use for
the database column you specified. You may enter any condition that
is valid in a SQL WHERE clause. Examples:
	= 12345

	LIKE ‘kernbench%’

	REGEXP ‘bad-dimm0[^0-9]*’

Filter String Viewer

In addition to the controls above, there is a viewer area in which you
can see the SQL WHERE clause that the frontend is building. Click View
Filter String to expand the textarea to show the clause. You may also
click “Edit Filter String” to edit the WHERE clause yourself. You may
use any of the fields specified in
GraphingDatabaseFields <../frontend/Web/GraphingFilters>.

Preconfigured Graphing Queries

It is possible to build a preconfigured query and keep it on the server.
These preconfigs will appear on the graphing interface under the
Preconfigured control. Preconfig files are key:value pairs separated
by lines that build the query on the frontend. See
[[MetricsPlot]] and [[MachineQualHistograms]].

The two frontends have different preconfig formats:

	[[MetricsPreconfigs]]

	[[QualPreconfigs]]

Using the Metrics Plot Frontend

The Metrics plot frontend is able to generate a line or bar chart of
most TKO database fields against aggregated values of most other TKO
database fields. This is usually used to create plots of performance
data versus some machine property, such as kernel version or BIOS
revision.

[image: ../../../_images/metrics_interface.png]

Using the Interface

Interface Options

	Graph Type: Set to “Metrics Plot” to show this interface.

	Preconfigured: Select a preconfigured graphing query. Use this to
automatically populate the fields in the interface to a preconfigured
example. You may then submit the query for plotting as is, or edit
the fields to modify the query. See
Graphing Pre Configs to more information
about preconfigured queries.

	Plot: Select whether you want a line plot or a bar chart.

	X-axis values: Select the values to place across the x-axis of
the plot. For example, selecting “Kernel” create a plot against
different kernel versions across the x-axis. See
GraphingDatabaseFields for details
about the different options. In addition to the options listed there,
X-axis values also accepts “(Single Point)” as an input, which
will plot all values on a single point on the x-axis; this is more
applicable for bar charts than for line plots.

	Global filters: Set the filters to apply across all series of the
plot. See GraphingFilters for more
information on setting a filter.

	Series: Set each series that you would like to display. Clicking
the [Add Series] link adds a series to the list. Each series has its
own Delete Series link, which will remove the series from the list.
If there is only one series and it is deleted, it will instead be
reset.
	Name: The name you want to give the series. It will be
displayed as the title of its respective subplot if you requested
multiple subplots, or as a label in the legend otherwise.

	Values: The values you want to aggregate to plot on the
y-axis. Typically, this is “Performance Keyval (Value)” to
aggregate performance data.

	Aggregation: The type of aggregation you want to do on the
data returned for each x-axis point. For example, specifying “AVG”
will plot the average of the value you selected above for each
point on the x axis.

	error bars: If the Aggregation is “AVG”, you may check
this box to show the standard deviations of each point as error
bars.

	Filters: Set the filters you want to apply to this particular
series. See GraphingFilters for more
information on setting a filter.

	Invert y-axis: Check this box if you want higher numbers
towards the bottom of the y-axis for this series.

	Normalize to: Set the normalization you want to use on this plot.
	No normalization (multiple subplots): Do not normalize the
data, and display each series on a separate subplot. Note that
this option is only available for Line plots.

	No normalization (single plot): Do not normalize the data, and
display all series on a single plot. This is the default option.

	Specified series: Graph all series as percent changes from a
particular series. That is, for each point on each series, plot
the percent different of the y-value from the y-value of the
specified series at their corresponding x-value. The series that
you normalize against will not be plotted (since all values will
be 0). If the series you normalize against does not have data for
some x-values, those values will not be plotted.

	First data point: Graph all series, renormalized to the first
valid data point in each series.

	Specified X-axis value: Graph all series, renormalized to the
data point at the specified x-axis value for each series. This is
similar to the above option, but rescales the y-axis for a point
other than the first data point. You must enter the exact name of
the x-axis value.

Interacting with the Graph

The four main actions you can do on the graph are:

	Hover: Hovering the cursor over a point or bar shows a tooltip
displaying the series that the point or bar is from, and the x- and
y-values for that data.

	Click: Clicking on a point or bar opens a drill-down dialog. The
dialog shows a sorted list of all the y-values that were aggregated
to form the point or bar. Clicking on any particular line in that
list jumps to the Test detail view describing the test that
generated that line of data.

	Embed: Clicking the [Link to this Graph] link at the bottom-right
of the generated plot displays an HTML snippet you can paste into a
webpage to embed the graph. The embedded graph updates with live data
at a specified refresh rate (as the max_age URL parameter, which is
in minutes), and show an indication of the last time it was updated.
Clicking on the embedded graph links to the Metrics plot
frontend, automatically populated with the query that will generate
the graph. See AutotestReportingApi
for a more powerful way to embed graphs in your pages.

	Save: The graph is delivered as a PNG image, so you can simply
right-click it and save it if you want a snapshot of the graph at a
certain point in time.

Metrics Preconfigs

Metrics preconfigs should be put in
<autotest_dir>/new_tko/tko/preconfigs/metrics/

The parameters are:

	plot: Line or Bar

	xAxis: Database column name for the X-axis values control.
See GraphingDatabaseFields.

	globalFilter[i][db]: Database column name for the ithglobal filter (start at 0). See
GraphingDatabaseFields.

	globalFilter[i][condition]: Condition field for the
ith global filter (start at 0).

	globalFilter_all: This controls if you have “all of” or “any of”
selected as the filter combination operation for the global filters.
Set to true for “all of”, and false for “any of”.

	name[j]: The name of the jth series.

	values[j]: The database column name that should be plotted on the
y-axis for the jth series. See
GraphingDatabaseFields.

	aggregation[j]: The aggregation to be applied to the data of the
jth series. Available aggregations are:
	AVG

	COUNT (DISTINCT)

	MIN

	MAX

	errorBars[j]: Sets if the error bars should be shown for the
jth series, if the aggregation is AVG. Set to true to
show error bars, false to keep them hidden.

	seriesFilters[j][k][db]: Database column name for the
kth filter of the jth series. See
GraphingDatabaseFields.

	seriesFilters[j][k][condition]: Condition field for the
kth filter of the jth series.

	seriesFilters[j]_all: This controls if you have “all of” or “any
of” selected as the filter combination operation for the filters on
the jth series. Set to true for “all of”, and
false for “any of”.

Example:

plot: Line
xAxis: kernel
globalFilter[0][db]: hostname
globalFilter[0][condition]: = 'my_test_host'
globalFilter_all: true
name[0]: dbench (throughput)
values[0]: iteration_value
aggregation[0]: AVG
errorBars[0]: true
seriesFilters[0][0][db]: iteration_key
seriesFilters[0][0][condition]: = 'throughput'
seriesFilters[0][1][db]: test_name
seriesFilters[0][1][condition]: = 'dbench'
seriesFilters[0]_all: true
name[1]: unixbench (score)
values[1]: iteration_value
aggregation[1]: AVG
errorBars[1]: true
seriesFilters[1][0][db]: iteration_key
seriesFilters[1][0][condition]: = 'score'
seriesFilters[1][1][db]: test_name
seriesFilters[1][1][condition]: = 'unixbench'
seriesFilters[1]_all: true

Machine Qualification Preconfigs

Machine qualification preconfigs should be put in
<autotest_dir>/new_tko/tko/preconfigs/qual/

The parameters are:

	globalFilter[i][db]: Database column name for the ithglobal filter (start at 0). See
GraphingDatabaseFields.

	globalFilter[i][condition]: Condition field for the
ith global filter (start at 0).

	globalFilter_all: This controls if you have “all of” or “any of”
selected as the filter combination operation for the global filters.
Set to true for “all of”, and false for “any of”.

	testFilter[j][db]: Database column name for the jthtest set filter (start at 0). See
GraphingDatabaseFields.

	testFilter[j][condition]: Condition field for the jthtest set filter (start at 0).

	testFilter_all: This controls if you have “all of” or “any of”
selected as the filter combination operation for the test set
filters. Set to true for “all of”, and false for “any of”.

	interval: Sizes of the bins in the histogram.

Example:

globalFilter[0][db]: hostname
globalFilter[0][condition]: LIKE 'my_host_names%'
globalFilter[1][db]: hostname
globalFilter[1][condition]: LIKE 'my_other_host_names%'
globalFilter_all: false
testFilter[0][db]: test_name
testFilter[0][condition]: = 'my_test_name'
testFilter_all: true
interval: 10

TKO Web Interface Requirements

The TKO web interface is a system to generate customizable reports
summarizing test results across many jobs. Whereas AFE focuses on
displaying execution status of indivudual jobs, TKO focuses on
displaying pass/fail results for individual tests. It has options for
filtering out various subsets of test results, grouping test results
along various dimensions, and displaying the results in different ways.

The new TKO UI will be a dynamic web application broadly resembling AFE.
Like AFE, the interface will be divided into tabs.

Overview

	There will be four main tabs: spreadsheet view, table view,
plotting view, and test details.

	To the right of these tabs will be a refresh button, followed by a
“Saved queries” drop-down box. This box will allow the user to
save a particular view, including which tab is being viewed, the
filtering conditions, and any parameters configuring the display. The
box will display a list of saved queries for the user as well as an
option to save a new query. Queries will have history support (see
below), so they can be shared via URLs (i.e. something like
http://myautotestserver/tko/#saved_query_1234).

	To the right of the saved queries will be a “Download CSV” link.

	The interface will have full history support. This will including
changing the browser title when changing certain view parameters.
This provides two benefits:
	users can share reports by copy-pasting URLs.

	browser history will serve as a useful way to navigate among
recent queries.

Filtering conditions

	All TKO activities involving filtering down to some subset of all
recorded test data. All views will share a common interface for
specifying these conditions. There will be two ways to specify these
conditions: via filtering widgets for each field, or via a single
custom SQL text area. The custom SQL text area is the analogue of
the condition text box in the old TKO interface.

	The UI will default to filtering widgets, with a button to go to
custom SQL mode. When switching to custom SQL, the current widget
selections will be converted to SQL. The widgets will be replaced
with a single text area, in which the user can then edit the SQL
condition. She may also click the button to start with and write a
SQL condition from scratch. Edited SQL can not be converted back to
widgets – changes will have to be reverted. This is analogous to the
“Edit control file” button in AFE.

	Filtering widgets mode will initially display a drop-down box of
fields on which to filter. This list includes hostname, host
keyval, host labels, job name, job tag, failure reason, test keyval,
test labels, test name, test status, time queued, time started, time
completed, user.

	Selecting a field from the drop-down will display a selection widget
for that field. The widget varies with the field. For most fields,
there will be a pair of list boxes displaying the available and
selected values for the field. For some fields, there will be an
alternative option to enter a regex to match. Some fields may be
completely different (i.e. time fields will allow the user to define
ranges via start and end times, with calendar- and clock-like helper
widgets available).

	To the right of each filter widget will be “+” and “-” buttons,
allowing the user to add another filter and delete the given
filter, respectively.

Spreadsheet view

	This view is the future version of what the existing TKO interface
does. It allows the user to group by two fields, one for row headers
and one for column headers. It then displays counts of passed test
runs and all test runs within each grouping.

	Incomplete (queued and running) tests are included in the
spreadsheet, unless filtered out.

	At the top, below the filtering area, will be a drop-down box to
select the row and column grouping fields. This is just like
the old TKO interface. Below each box will be a “Customize
rows/columns...”‘ link, which will expand to allowing the user to
do two things:
	select multiple fields for row or column headers to create
composite headers (and customize the field ordering)

	customize ordering of row and column values.

	Just above the spreadsheet will be a drop-down box with table-wide
actions. It will resemble the right-click context menus (see
below).

	The displayed spreadsheet will look similar to how it does today, but
will have floating row and column headers, much like Excel or
Google Spreadsheets.

	Left-clicking on a cell will perform a default drilldown operation
as it does in the old interface.

	Right-clicking on a cell will bring up a context menu.
	Cells with multiple test runs will have a number of drill down
options first, showing different combinations of row-column
fields to drilldown to.

	Cells with a single test run will have a single option at the top
to view test details (this is the default drilldown option).
This will bring the user to the test details tab.

	All cells will have an option to switch to table view, to
triage failures (see below), and to apply or remove a
label. Apply/remove label will bring up a small dialog allowing
the user to select which label to use.

	Row and column headers will act like cells with multiple test
runs.

	Ctrl-left-clicking on a cell will select (or deselect) the cell.
Multiple cells can be selected and then right-clicking can be used to
act on all selected cells.

Table view

	This view will display individual test runs as rows within a table.
The columns and sorting can be customized. It also has the capability
to group and show counts.

	Below the filtering area at the top will be a selection widget
allowing the user to select and order the columns displayed.

	Below the column selection will be a check box to “Group by these
columns and show counts”. When this is selected, results will be
grouped by all selected columns and each row will show the count of
test runs within that group.

	Clicking on a column header will sort the table on that column.

	Left-clicking on a row will bring the user to the test details tab.
Right-clicking on a row will bring up a menu allowing the user to go
to test details or to apply/remove labels.

	Left-clicking on a grouped row will drilldown to an ungrouped table
view. Right-clicking will bring up a menu allowing drilldown or
apply/remove labels.

	Job triage view is a particular table view. It is a grouped table
view, with columns for job tag, test name, and failure reason. It is
sorted by these columns in this order, and finally by counts
descending. This view is particularly useful for triaging failures
among many test runs and is therefore accessible via shortcuts from
spreadsheet view.

Plotting view

	Detailed requirements for the plotting view have yet to be
determined.

Test details

	This view will display detailed information for a single test run.
All of the fields for a test will be displayed, including all hosts
on which a test ran and their attributes and all test and iteration
keyvals. Key log files will also be readily accessible in
expandable boxes, including status.log, autoserv.stdout,
autoserv.stderr, and client.log.*.

New UI user requirements

Use cases

	Job tracking - viewing a spreadsheet of tests vs machines for a
given job, with cells showing status of each test on each machine
(queued, running, passed, failed, etc.). Tests can be sorted in the
order in which they ran. Results logs are easily accessible. This is
mostly available in the old interface. The addition of queued/running
tests will be the biggest addition. Sorting tests in running order is
not as simple as it seems (control files aren’t guaranteed to be
deterministic, for example). We have ideas about how to solve that
but we’ve deferred it for now.

	Job triage - viewing a summary of failure reasons for a job. The
view should display a list of unique failure reasons for each test
(including job failures) with information on the frequency of each
failure reason. It should be easy to view the list of machines that
failed for each reason with links to detailed log files. See “job
triage” feature.

	Kernel test status - viewing a spreadsheet of kernel versions vs
tests for a set of “official kernel test” jobs, with cells showing
success rates. User can select which kernel versions to include. It
should be easy to:
	group headers for kernel versions, so that the user can compare
multiple release candidates within multiple kernel versions

	drill down to see machine architecture vs tests for a particular
kernel version, to assist in triaging architecture-specific
failures

	drill down to see failure reasons for failures of a particular
test on a particular kernel. As with job triage, this should make
it easy to drill down to machine lists for each failure reason.
Test labels solve the “official kernel tests” problem. Filter
widgets will ease selection of included kernels. Grouping headers
by kernel version will***not***be supported for now (this is not
to be confused with composite headers, which combines two
different fields). Different drill downs are supported via context
menus.

	Test series - user has a pool of machines and runs a test on all
machines. Machines that fail are triaged and the tests is rerun on
them, and so on until all machines pass. User should be able to view
status of last run test within the series for each machine. Triage of
failed machines should be easy, as in Job triage. Additionally,
user can see state of non-passed machines - failed awaiting triage,
triaged awaiting re-test, re-test queued/running, etc. Test labels
should support this workflow. It will still require a fair bit of
work on the part of the user, but we felt this was a necessary
tradeoff in order to avoid putting too much specialized complexity in
the frontend. Multiple selection should allow fairly powerful label
usage, which, in combination with saved queries and filter widgets,
should ease the pain greatly.

	Machine utilization - viewing a chronological history of all
tests (and verifies/repairs?) run on a particular machine.
Test/verify/repair outcome information is displayed, making it easy
to track down when a certain test started failing or when machine
verification first failed. Detailed logs are easily accessible.
Table view should provide this basic feature. The main lacking
aspect is inclusion of verify and repair info. This is certainly
doable but requires further discussion.

	Performance graphs - plotting performance data vs. kernel version
for many iterations of a particular test on a particular machine.
This, along with the other plotting use cases below, are not being
addressed now.

	Machine qualification graphs - plotting a histogram of percentage
of tests passed on each machine, with bars clickable to view list of
machines in each bucket.

	Utilization graphs - plotting machine utilization as a percentage
of time vs. machine, over a given span of time.

	Generic keyval graphs - user selects a set of kernels, a set of
machines, and a set of tests. In a single graph, all keyvals are
plotted together (normalized) vs. kernel version. The ordering of
kernels is completely user-definable. Data points link back to
results logs.

	Kernel benchmark comparisons - plotting a set of benchmark values
for a pair of kernels together, to compare the two versions.

	Job set comparisons - plotting a set of benchmark values for two
sets of jobs together.

Specific feature requests

	Clicking on a kernel brings up a tests vs. status spreadsheet
filtered for that particular kernel (possible with drilldown
options) This is a easy shortcut for bringing up a particular
report.

	Reason values displayed in table or one click away (job triage
view) When triaging a job or jobs with many failures, there needs
to be a easy way to view a summary of the reasons for failures (from
the DB “reason” field). Similar reasons should be grouped together
and it should be easy to see which hosts failed with which reasons.

	Include tests that are queued or running in TKO display (included)
Right now TKO only shows tests that have completed. It should also
display queued and running tests so the user can get a full picture
of a job from a single report.

	Preserve and display query history (included as browser history)
The UI should present a list of the last few (or many) spreadsheet
queries executed, including drilldown history. The user should be
able to click to go back to a previous query.

	Filtering on a list of kernels/jobs to match (filter widgets) The
user should be able to easily specify a list of kernels and filter
down to tests run on any of those kernels. Likewise for filtering to
a list of jobs.

	Kernels must sort in chronological order (not addressed; this is a
very particular request which we may address with specialized code)
Most fields simply sort alphanumerically, but kernels must sort
specially so that they come out in chronological order.

	Clicking on a kernel brings up a list of failed machines (context
menus) This is another easy shortcut for bringing up a particular
report.

	Ability to have more than one grouping field for rows or columns (aka
“composite headers” or “multiple headers”) (included) For example,
the user might specify two fields for row grouping and the resulting
spreadsheet would have a row for each combination of values from the
two fields.

	Grouping on custom expressions (not included; potential future
addition) Instead of simply specifying a field to group on, the
user could specify a custom SQL-like expression.

	More powerful filtering by machine labels (should be possible with
appropriate usage of machine labels) The user should be able to
filter on machine types both very specifically (i.e. Intel Pentium D
1GB RAM) and very generally (i.e. all Intel).

	Easy way to keep track of where the user is in a large table (when
row and column headers are no longer visible) (floating headers)
When browsing a large table, after scrolling to the right and down,
the row and column headers are no longer visible and the user may
have no way to know what values a particular cell corresponds to.

	Machine-centric view showing utilization of a particular machine over
time (see use case; graphical timeline not included) This view
would show a list of things that have been run on the machine in
chronological order, so the user could get some idea of how the
machine’s been utilized. The ability to view percentage of time in
use would be good. A graphical timeline sort of view would also be
good.

	CSV data export (included) The user should always be able to
download the currently displayed data in CSV format.

	Invalidation of jobs (solved with machine labels) The user should
be able to mark jobs (perhaps even individual tests) as invalid and
have them excluded from TKO reporting.

	Powerful and flexible filtering (included) Selections can be
specified by choosing from a list, by regexp matching or by entering
raw SQL expressions

	Automatic bug filing (not included) When triaging failures, the
user can click a button to create a new bug in a bugtracking system
and have job and failure information automatically bundled up and
attached to the bug.

	Filtering on keyvals (included) Users should be able to filter on
any keyval when filtering results

Autotest Reporting API

The Autotest Reporting API allows you to embed TKO spreadsheets, tables
and graphs into your own HTML pages. This can be used to create
powerful, customizable dashboards based on Autotest results.

Currently, only graphs are supported. Spreadsheets and tables are
coming soon.

Setup

In order to use the Autotest Reporting API, your HTML page needs to load
the Autotest Reporting API Javascript library and then call it to create
widgets. Here’s a simple skeleton:

<!DOCTYPE html>
<head>
 <script type="text/javascript" src="http://your-autotest-server/embedded-tko/autotest.EmbeddedTkoClient.nocache.js">
 <script type="text/javascript">
 function initialize() {
 Autotest.initialize("http://your-autotest-server");

 // code to setup widgets goes here. for example:
 var plot = Autotest.createMetricsPlot(document.getElementById("plot_canvas"));
 plot.refresh(...); // see below
 }
 </script>
</head>

<body onload="initialize()">
 <!-- document outline goes here. for example: -->
 <div id="plot_canvas"></div>
</body>

The first script tag loads the Autotest Reporting API library. The
initialize() function then calls Autotest.initialize(), which
tells the library where to find the Autotest server running the TKO web
interface. Finally, it can proceed to call Autotest.create* methods
to create widgets. All Autotest.create* methods accept a DOM Element
to which they will attach themselves.

Graphing

You can create a MetricsPlot widget using
Autotest.createMetricsPlot(parentElement). Metrics plot widgets have
one method, refresh(parameters). This interface will be changing
soon so it won’t be documented in detail; please see the example in
frontend/client/src/autotest/public/EmbeddedTkoClientTest or
ask showard if you would like to use it and have questions.

Autotest Web Frontend Implementation details

Here we outline the building blocks and implementation details of the autotest
web interface.

Overview

Here’s a broad overview of how the system fits together:

[[FrontendImplementationDetails/frontend_overview.png]]

	The Django RPC server is an RPC server, written using the Django
framework. It functions as a web server, accepting RPCs as HTTP POST
requests, querying the MySQL database as necessary, and returning
results. In a production environment, it runs within Apache using
mod_python
	The AFE server code lives under frontend/afe and uses the
autotest_web database.

	The TKO server code lives under new_tko/tko and uses the
tko database.

	In both servers, the RPC entry points are defined in
rpc_interface.py.

	All RPC POST requests go to a single URL,
(afe|new_tko)/server/rpc/. They get dispatched to RPC methods
by the code in rpc_handler.py. See Django
documentation [http://docs.djangoproject.com/en/dev/] for an
explanation of how HTTP requests get mapped to Python code using
URLconfs.

	Database models live in models.py. See Django
documentation [http://docs.djangoproject.com/en/dev/] for an
explanation of models.

	RPC calls and responses are encoded according to the JSON-RPC
protocol.
	JSON is a simple data representation format based on Javascript.
See http://json.org [http://json.org/].

	JSON-RPC is a very simple standard for representing RPC calls and
responses in JSON. See
http://jsonrpc.org [http://jsonrpc.org/].

	RPCs are made by sending a POST request to the server with the
POST data containing the JSON-encoded request. The response text
is a JSON-encoded response.
	On the server, the code for serializing JSON lives at
frontend/afe/simplejson. The code for forming and
dispatching JSON-RPC requests lives at
frontend/afe/json_rpc.

	The CLI uses the same code for serializing JSON-RPC.

	The GWT client uses GWT’s builtin JSON library for serializing
JSON. The code for handling JSON-RPC requests is in
autotest.common.JsonRpcProxy and friends.

	The GWT client is a browser-based client for AFE and TKO
(technically, there are two separate clients). It’s written using
Google Web Toolkit (GWT), a framework for writing browser apps in
Java and having them compiled to Javascript. See
http://code.google.com/webtoolkit.
	More details...

	The CLI is a command-line Python application that makes calls to
the RPC server. It lives under the cli directory. cli/autotest-rpc-client
is the main entry point.

Host Protection Levels

Host protection levels are used to protect particular hosts from actions
that occur during the verify and repair phases. These can be set using
the CLI or the frontend admin interface. They are defined in
client/common_lib/host_protections.py and contained in the
protection field of the hosts table in the autotest_web
database.

	No protection – anything can be done to this host.

	Repair software only – any software problem can be fixed,
including a full machine reinstall.

	Repair filesystem only – the filesystem can be cleaned out, but
not system reconfiguration or reinstall can occur.

	Do not repair – do not attempt any repair on the machine.

	Do not verify – do not verify or repair the machine (the machine
will be assumed to be in working order).

Specifying kernels in the Job Creation Interface

Autotest has a system to expand Linux kernel versions to actually
downloadable source trees, or even installable distro packages, that
can be used in job creation interfaces, such as CLI and web interfaces.
At the moment, we support the following release schemas:

	Upstream versions. You can specify an upstream version, that will
expand to an URL pointing to a tarball inside the kernel.org mirror
you have specified. The script/library client/kernelexpand.py
has this functionality implement, and lets you test it which versions
can be actually expanded:

$ client/kernelexpand.py 3.2.1
http://www.kernel.org/pub/linux/kernel/v3.x/linux-3.2.1.tar.bz2

We still don’t allow you to specify an arbitrary distro package version
for autotest to download, for example:

$ client/kernelexpand.py 3.3.4-5.fc17.x86_64
Kernel '3.3.4-5.fc17.x86_64' not found. Please verify if your version number is correct.

	Direct URLs pointing to rpm and deb packages containing the kernel. Example:

http://example.com/kernel-3.3.1.rpm
http://example.com/kernel-3.5-rc2.deb

You can specify multiple versions separating them with a comma or space.

Obviously, we’d like to cleanly support other ways of specifying kernels in the
job creation interface, so this makes the complicated logic transparent to
users, but we’re not there yet. Please open an issue requesting for a given
method and we’ll consider it carefully.

Using the Machine Qualification Histogram Frontend

The Machine qualification histogram frontend is able to generate a
histogram of test pass rates for a specified set of tests and machines.
The histogram shows bins of configurable size for pass rates between 0
and 100, exclusive, as well as special bins for 0% and 100% pass rates.
There is also an “N/A” bin, which shows the machines that did not run
any of the tests that you specified to analyze.

[[MachineQualHistograms/machine_qual_interface.png]]

Using the Interface

Interface Options

	Graph Type: Set to “Machine Qualification Histogram” to show this
interface.

	Preconfigured: Select a preconfigured graphing query. Use this to
automatically populate the fields in the interface to a preconfigured
example. You may then submit the query for plotting as is, or edit
the fields to modify the query. See
Graphing Pre Configs to more information
about preconfigured queries.

	Global filters: Set the filters on the machines you would like to
see. Any machine that satisfies the filter will be plotted in the
histogram in some way. See GraphingFilters
for more information on setting a filter.

	Test set filters: Set the filters on the tests that you want to
analyze. The pass rates for what you enter in this filter will be
plotted on the histogram. If a machine satisfies the Global
filters above but has not run any tests that satisfy the Test set
filters, it will appear in the “N/A” bin. See
GraphingFilters for more information on
setting a filter.

	Interval: Configure the size of each bin. For example, an
interval of 5 means that the bins should be 0%-5%, 5%-10%, etc.

Interacting with the Graph

The four main actions you can do on the graph are:

	Hover: Hovering the cursor over a bar shows a tooltip displaying
the boundaries of the bin and the number of machines in that bin.

	Click: Clicking on a bar jumps to the Table view,
automatically configured to show the specific machines and pass rates
in that bin.

	Embed: Clicking the [Link to this Graph] link at the bottom-right
of the generated plot displays an HTML snippet you can paste into a
webpage to embed the graph. The embedded graph updates with live data
at a specified refresh rate (as the max_age URL parameter, which is
in minutes), and show an indication of the last time it was updated.
Clicking on the embedded graph links to the Machine qualification
histogram frontend, automatically populated with the query that
will generate the graph.

	Save: The graph is delivered as a PNG image, so you can simply
right-click it and save it if you want a snapshot of the graph at a
certain point in time.

Existing Graphing Scripts Frontend

The Existing graphing scripts frontend is a graphical frontend to
some existing graphing CGI scripts in TKO.

[image: ../../../_images/existing_scripts_interface.png]

Interface Options

	Normalize Performance: This checkbox allows you to normalize the
performance numbers to percent differences instead of absolute
numbers. Checking this option also allows you to select more than one
benchmark at a time in the Benchmark control.

	Hostname: Name of the machine you want to analyze. As you begin
typing, this textbox will show suggested completions based on all the
hosts present in your TKO database.

	Benchmark: This control will either be a drop-down box or a
multiple-select box, depending on if Normalize Performance is
checked or not. Select the benchmarks you want to analyze here. Only
kernbench, dbench, tbench, unixbench, and iozone are
supported.

	Kernel: Specify the kernels that you want to have appear on the
x-axis, or all for all versions with data matching the hostname
and benchmark specifications above.

System Administration

	Installing an Autotest server (Ubuntu/Debian version)
	Install script

	Server/Scheduler/Web UI Installation Steps

	Install required packages

	Important notes

	Creating the autotest user

	Cloning autotest

	Setup MySQL

	Install extra packages

	Update Apache config

	Update Autotest config files

	Run DB migrations to set up DB schemas and initial data

	Run Django’s syncdb

	Compile the GWT web frontends

	Fix permissions

	Restart apache

	Test the server frontend

	Start the scheduler

	Executing using SysV init scripts

	Executing using systemd (Debian Unstable)

	Executing manually using screen (not recommended)

	Client Installation Steps

	Setup password-less ssh connection from the server to this host (client)

	Import tests data into the database

	Troubleshooting your server

	Virt Test specific configuration

	See also

	Installing an Autotest server (Red Hat version)
	Install script

	Server/Scheduler/Web UI Installation Steps

	Install required packages

	Important notes

	Creating the autotest user

	Cloning autotest

	Setup MySQL

	Install extra packages

	Update Apache config

	Update Autotest config files

	Run DB migrations to set up DB schemas and initial data

	Run Django’s syncdb

	Compile the GWT web frontends

	SELinux Issues

	Restart Apache

	Test the server frontend

	Start the scheduler

	Executing using old SysV init scripts (RHEL6 and Fedora <= 14)

	Executing using systemd (Fedora >= 15)

	Executing manually using screen (not recommended)

	Client Installation Steps

	Setup password-less ssh connection from the server to this host (client)

	Import tests data into the database

	Troubleshooting your server

	Virt Test specific configuration

	See also

	Autotest Server Install - Set up MySQL

	Autotest Server/Scheduler/WebUI Install script

	Autotest Server Troubleshooting
	Checking scheduler logs

	Status is queing

	Status is pending

	Setting up an Autotest Drone (Results Server)
	Global Configuration Variables

	Updated [SCHEDULER] configuration

	Software Required on the Results Server

	Start/Restart the Scheduler

	Tips and Tricks

	System Administration Tips and Tricks
	Message of the Day

	Virt Test specific configuration

	Important server configuration for virt-test

	Update virt test config files

	Analyze virt job execution results

	Setting up a distributed Autotest production environment
	The problem

	MySQL and Apache

	Scheduler, Autoserv and the Results Repository

	Viewing results files from the web

	Recommendations

	Using the autotest package management with autoserv
	Setting up your Autotest server as a packaging repository

	Adding a SSH/HTTP Repository

Installing an Autotest server (Ubuntu/Debian version)

Install script

We have developed a script to automate the steps described below on a
Ubuntu 12.04/12.10 server. So if you want to save yourself some time,
please check the
Installing Server/Scheduler/WebUI notes.

If you want to do it all yourself, we opted by keeping the documentation
herem and we’ll do the best to update it. However, we’re always working on
streamlining this process, so it might be possible that this can get out of
sync.

If you find any step that might be outdated, please let us know, and we’ll
fix it.

Server/Scheduler/Web UI Installation Steps

Install required packages

Autotest is a complex project and requires a number of dependencies to
be installed.

Note

Currently autotest is compatible with Django 1.5, so if your
distribution has anything lower or higher than this version, you
will have problems and are advised to use a compatible version.

We have automated this step on recent Ubuntu (12.04/12.10), although
it should work on Debian too:

sudo /usr/local/autotest/installation_support/autotest-install-packages-deps

If you want to install it manually here it goes. Keep in mind this can be
outdated, if so we kindly ask your help with keeping it up to date.

Install utility packages:

apt-get install -y unzip wget gnuplot makepasswd

Install webserver related packages (and Django):

apt-get install -y apache2-mpm-prefork libapache2-mod-wsgi python-django

Install database related packages:

apt-get install -y mysql-server python-mysqldb

Install java in order to compile the web interface, and git for cloning the
autotest source code repository:

apt-get install git openjdk-7-jre-headless

Also, you’ll need to install a bunch of auxiliary external packages

apt-get install python-imaging python-crypto python-paramiko python-httplib2 python-numpy python-matplotlib python-setuptools python-simplejson

Important notes

Important: For this entire documentation, we will assume that you’ll
install autotest under /usr/local/autotest. If you use a different path,
please change /usr/local/autotest accordingly. Please that you may have
some issues with apache configuration if you don’t choose
/usr/local/autotest.

Important: We will also assume that you have created an autotest
user on your box, that you’ll use to perform most of the instructions
after the point you have created it. Most of the instructions will use
autotest unless otherwise noted.

Creating the autotest user

As root:

useradd autotest
passwd autotest [type in new password]

Cloning autotest

You can then clone the autotest repo (as root):

cd /usr/local
git clone --recursive git://github.com/autotest/autotest.git
chown -R autotest:autotest autotest

Log out, re-log as autotest, and then proceed.

Setup MySQL

Please check the shared
Configuring Autotest Server Database notes

Install extra packages

Run the build script to install necessary external packages. If you ran the
package install script, you should have all you could get from your system
packages and it would download only GWT. As autotest:

/usr/local/autotest/utils/build_externals.py

Always re-run this after a git pull if you notice it has changed, new
dependencies may have been added. This is safe to rerun as many times as you
want. It will only fetch and build what it doesn’t already have. It’s
important to note that the autotest scheduler will also try to run
build_externals.py whenever it’s executed in order to make sure every piece
of software has the right versions.

NOTE: Set the HTTP_PROXY environment variable to
http://proxy:3128/ before running the above
if your site requires a proxy to fetch urls.

Update Apache config

If the only thing you want to do with Apache is run Autotest, you can use the
premade Apache conf:

Ubuntu 12.04

sudo rm /etc/apache2/sites-enabled/000-default
sudo ln -s /etc/apache2/mods-available/version.load /etc/apache2/mods-enabled/
sudo ln -s /usr/local/autotest/apache/conf /etc/apache2/autotest.d
sudo ln -s /usr/local/autotest/apache/apache-conf /etc/apache2/sites-enabled/001-autotest
sudo ln -s /usr/local/autotest/apache/apache-web-conf /etc/apache2/sites-enabled/002-autotest

Ubuntu 12.10 - The version plugin now is compiled into apache, so it can’t
be enabled, otherwise you will have trouble.

sudo rm /etc/apache2/sites-enabled/000-default
sudo ln -s /usr/local/autotest/apache/conf /etc/apache2/autotest.d
sudo ln -s /usr/local/autotest/apache/apache-conf /etc/apache2/sites-enabled/001-autotest
sudo ln -s /usr/local/autotest/apache/apache-web-conf /etc/apache2/sites-enabled/002-autotest

You will have to comment the line

WSGISocketPrefix run/wsgi

In /usr/local/autotest/apache/conf/django-directives, as we found out that
WSGI configuration varies among distros, and the version shipped with Ubuntu
12.04 is not compatible with this directive.

Also, you’ll need to enable rewrite mod rules, which you can do by

a2enmod rewrite

Then, update your apache2 service

update-rc.d apache2 defaults

If you want to do other things on the Apache server as well, you’ll
need to insert the following line into your Apache conf, under the
appropriate VirtualHost section:

Include "/usr/local/autotest/apache/apache-conf"
Include "/usr/local/autotest/apache/apache-web-conf"

And make sure the rewrite mod is enabled, as well as the autotest config file
directory is properly linked:

sudo ln -s /etc/apache2/mods-available/version.load /etc/apache2/mods-enabled/
sudo ln -s /usr/local/autotest/apache/conf /etc/apache2/autotest.d

Note: You will have to enable mod_env on SuSE based distro’s for the
all-directives to load properly when apache is started.

Update Autotest config files

Important: Edit the following files to match the database passwords
you set earlier during session #Set_up_MySQL, as autotest, more specifically,
MYSQL_AUTOTEST_PASS.

/usr/local/autotest/global_config.ini
/usr/local/autotest/shadow_config.ini

Important: Please, do not change this field

[AUTOTEST_WEB]
Machine that hosts the database
host: localhost

As we are doing the setup on the same machine where mysql is running, so
please, pretty please don’t change it otherwise you will have trouble
moving forward.

Things that you usually want to change on global_config.ini:

Section AUTOTEST_WEB

DB password. You must set a different password than the default
password: please_set_this_password

Section SCHEDULER

Where to send emails with scheduler failures to
(usually an administrator of the autotest setup)
notify_email:
Where the emails seem to come from (usually a noreply bogus address)
notify_email_from:

Section SERVER

Use custom SMTP server
If none provided, will try to use MTA installed on the box
smtp_server:
Use custom SMTP server
If none provided, will use the default SMTP port
smtp_port:
Use custom SMTP user
If none provided, no authentication will be used
smtp_user:
Use SMTP password
It only makes sense if SMTP user is set
smtp_password:

Run DB migrations to set up DB schemas and initial data

Important: If you set up your database using autotest-database-turnkey,
this step can be safely skipped.

During the time span of the project, the autotest database went through
design changes. In order to make it able for people running older
versions to upgrade their databases, we have the concept of migration.
Migration is nothing but starting from the initial database design until
the latest one used by this specific version of the application. As autotest:

/usr/local/autotest/database/migrate.py --database=AUTOTEST_WEB sync

Run Django’s syncdb

Important: If you set up your database using autotest-database-turnkey,
this step can be safely skipped.

You have to run syncdb twice, due to peculiarities of the way syncdb works on
Django. As autotest:

/usr/local/autotest/frontend/manage.py syncdb
/usr/local/autotest/frontend/manage.py syncdb

Compile the GWT web frontends

Compile the Autotest web application and TKO frontend. As autotest:

/usr/local/autotest/utils/compile_gwt_clients.py -a

You will need to re-compile after any changes/syncs of the
frontend/client pages.

Fix permissions

Make everything in the /usr/local/autotest directory
world-readable, for Apache’s sake:

chmod -R o+r /usr/local/autotest
find /usr/local/autotest/ -type d | xargs chmod o+x

Restart apache

sudo apache2ctl restart

Test the server frontend

You should be able to access the web frontend at
http://localhost/afe/, or
http://your.server.fully.qualified.name.or.ip/afe/

Start the scheduler

Executing using SysV init scripts

To start the scheduler on reboot, you can setup init.d.

sudo cp /usr/local/autotest/utils/autotest.init /etc/init.d/autotestd
sudo update-rc.d /etc/init.d/autotestd defaults

Then, you can reboot and you will see autotest-scheduler-watcher and autotest-scheduler processess running.

Executing using systemd (Debian Unstable)

If you’re using systemd, we ship a systemd service file. Copy the service file
to systemd service directory. As root or using sudo:

sudo cp /usr/local/autotest/utils/autotestd.service /etc/systemd/system/

Make systemd aware of it:

sudo systemctl daemon-reload

Start the service:

sudo systemctl start autotestd.service

Check its status:

autotestd.service - Autotest scheduler
 Loaded: loaded (/etc/systemd/system/autotestd.service)
 Active: active (running) since Wed, 25 May 2011 16:13:31 -0300; 57s ago
 Main PID: 1962 (autotest-schedu)
 CGroup: name=systemd:/system/autotestd.service
 ├ 1962 /usr/bin/python -u /usr/local/autotest/scheduler/autotest-scheduler-watcher
 └ 1963 /usr/bin/python -u /usr/local/autotest/scheduler/autotest-scheduler /usr/local/autotest/results

Executing manually using screen (not recommended)

You can execute the babysitter scripter through, let’s say, nohup or
screen. It is important to remember that by design, it’s better to
create an ‘autotest’ user that can run the scheduler and communicate
with the machines through ssh. As root:

yum install screen

As autotest:

screen
/usr/local/autotest/scheduler/autotest-scheduler-watcher

You can even close the terminal window with screen running, it will keep
the babysitter process alive. In order to troubleshoot problems, you can
pick up the log file that autotest-scheduler-watcher prints and follow it
with tail. This way you might know what happened with a particular
scheduler instance.

Client Installation Steps

Clients are managed in the tab hosts of the web frontend. It is important
that you can log onto your clients from your server using ssh without
requiring a password.

[[remote-connection.png]]

Setup password-less ssh connection from the server to this host (client)

As autotest, on the server, create a RSA key in the following way:

ssh-keygen -t rsa

Then, still on the server, and as autotest, copy it to the host:

ssh-copy-id root@your.host.name

Import tests data into the database

You can import all the available tests inside the autotest client dir by
running the test importer script as autotest:

/usr/local/autotest/utils/test_importer.py -A

If you did clone the autotest repo with –recursive, the virt test will be
among the imported tests.

Troubleshooting your server

You can refer to the
Autotest Troubleshooting Documentation
documentation for some commonly reported problems and their root causes.

Virt Test specific configuration

Please refer to the shared Autotest Virt Documentation

See also

	The Parser is used to import results into TKO

	The Web Frontend Docs talks about
using the frontend

	The Web Frontend Development
talks about setting up for frontend development work - you do not want to
develop through Apache!

Installing an Autotest server (Red Hat version)

Install script

We have developed a script to automate the steps described below on a
(Fedora 16/17/RHEL6.2) server. So if you want to save yourself some time,
please check the
Installing Server/Scheduler/WebUI notes.

If you want to do it all yourself, we opted by keeping the documentation
herem and we’ll do the best to update it. However, we’re always working on
streamlining this process, so it might be possible that this can get out of
sync.

If you find any step that might be outdated, please let us know, and we’ll
fix it.

Server/Scheduler/Web UI Installation Steps

Install required packages

We have automated this step on recent Fedora (17, 18) and RHEL 6, although
it should work on Debian too:

sudo /usr/local/autotest/installation_support/autotest-install-packages-deps

If you want to install it manually here it goes. Keep in mind this can be
outdated, if so we kindly ask your help with keeping it up to date.

Note

Currently autotest is compatible with Django 1.5, so if your
distribution has anything lower or higher than this version, you
will have problems and are advised to use a compatible version.

If the distro you are running has Django 1.5 packaged,
you can install the django that your distro ships:

yum install Django

Otherwise, it’s best to leave to build_externals.py the task of installing
it. Other needed packages:

yum install git make wget python-devel unzip
yum install httpd mod_wsgi mysql-server MySQL-python gnuplot python-crypto python-paramiko java-1.6.0-openjdk-devel python-httplib2
yum install numpy python-matplotlib libpng-devel freetype-devel python-imaging

And our aexpect package, that can be installed from our COPR repo. Instructions
to add the repo can be found on:

https://copr.fedoraproject.org/coprs/lmr/Autotest/

With the repo enabled, you can go on to install:

yum install aexpect

Alternatively, you can simply install it from pip:

pip install aexpect

Important notes

Important: For this entire documentation, we will assume that you’ll
install autotest under /usr/local/autotest. If you use a different path,
please change /usr/local/autotest accordingly. Please that you may have
some issues with apache configuration if you don’t choose
/usr/local/autotest.

Important: We will also assume that you have created an autotest
user on your box, that you’ll use to perform most of the instructions
after the point you have created it. Most of the instructions will use
autotest unless otherwise noted.

Creating the autotest user

As root:

useradd autotest
passwd autotest [type in new password]

Cloning autotest

You can then clone the autotest repo (as root):

cd /usr/local
git clone --recursive git://github.com/autotest/autotest.git
chown -R autotest:autotest autotest

Log out, re-log as autotest, and then proceed.

Setup MySQL

Please check the shared
Configuring Autotest Server Database notes

Install extra packages

Run the build script to install necessary external packages. If you ran the
package install script, you should have all you could get from your system
packages and it would download only GWT. As autotest:

/usr/local/autotest/utils/build_externals.py

Always re-run this after a git pull if you notice it has changed, new
dependencies may have been added. This is safe to rerun as many times as you
want. It will only fetch and build what it doesn’t already have. It’s
important to note that the autotest scheduler will also try to run
build_externals.py whenever it’s executed in order to make sure every piece
of software has the right versions.

Important: Set the HTTP_PROXY environment variable to
http://proxy:3128/ before running the above if
your site requires a proxy to fetch urls.

Update Apache config

As root:

ln -s /usr/local/autotest/apache/conf /etc/httpd/autotest.d
ln -s /usr/local/autotest/apache/apache-conf /etc/httpd/conf.d/z_autotest.conf
ln -s /usr/local/autotest/apache/apache-web-conf /etc/httpd/conf.d/z_autotest-web.conf

Test your configuration (now with all autotest directives) by running (as root):

service httpd configtest

Now make sure apache will be started on the next boot. If you are running on
a pre-systemd OS, such as RHEL6, you can enable do it this way:

chkconfig --level 2345 httpd on

On a systemd OS (Fedora >= 16), you could do it this way:

systemctl enable httpd.service

Update Autotest config files

Important: Edit the following files to match the database passwords
you set earlier during session #Set_up_MySQL, as autotest, more specifically,
MYSQL_AUTOTEST_PASS.

/usr/local/autotest/global_config.ini
/usr/local/autotest/shadow_config.ini

Important: Please, do not change this field

[AUTOTEST_WEB]
Machine that hosts the database
host: localhost

As we are doing the setup on the same machine where mysql is running, so
please, pretty please don’t change it otherwise you will have trouble
moving forward.

Things that you usually want to change on global_config.ini:

Section AUTOTEST_WEB

DB password. You must set a different password than the default
password: please_set_this_password

Section SCHEDULER

Where to send emails with scheduler failures to
(usually an administrator of the autotest setup)
notify_email:
Where the emails seem to come from (usually a noreply bogus address)
notify_email_from:

Section SERVER

Use custom SMTP server
If none provided, will try to use MTA installed on the box
smtp_server:
Use custom SMTP server
If none provided, will use the default SMTP port
smtp_port:
Use custom SMTP user
If none provided, no authentication will be used
smtp_user:
Use SMTP password
It only makes sense if SMTP user is set
smtp_password:

Run DB migrations to set up DB schemas and initial data

Important: If you set up your database using autotest-database-turnkey,
this step can be safely skipped.

During the time span of the project, the autotest database went through
design changes. In order to make it able for people running older
versions to upgrade their databases, we have the concept of migration.
Migration is nothing but starting from the initial database design until
the latest one used by this specific version of the application. As autotest:

/usr/local/autotest/database/migrate.py --database=AUTOTEST_WEB sync

Run Django’s syncdb

Important: If you set up your database using autotest-database-turnkey,
this step can be safely skipped.

You have to run syncdb twice, due to peculiarities of the way syncdb works on
Django. As autotest:

/usr/local/autotest/frontend/manage.py syncdb
/usr/local/autotest/frontend/manage.py syncdb

Compile the GWT web frontends

Compile the Autotest web application and TKO frontend. As autotest:

/usr/local/autotest/utils/compile_gwt_clients.py -a

You will need to re-compile after any changes/syncs of the
frontend/client pages.

SELinux Issues

You may encounter issues with SELinux not allowing a section of the web
UI to work when running in Enforcing Mode. In order to fix this, you can
run the following commands to allow execution of the cgi scripts on your
server.

As root:

semanage fcontext -a -t httpd_sys_script_exec_t '/usr/local/autotest/tko(/.*cgi)?'
restorecon -Rvv /usr/local/autotest

Note: If you are having weird problems with installing autotest, you
might want to turn off SElinux to see if the problem is related to it,
and then think of a sensible solution to resolve it.

Restart Apache

As root:

/sbin/service httpd restart

Test the server frontend

You should be able to access the web frontend at
http://localhost/afe/, or
http://your.server.fully.qualified.name.or.ip/afe/

Start the scheduler

Executing using old SysV init scripts (RHEL6 and Fedora <= 14)

As root:

cp /usr/local/autotest/utils/autotest-rh.init /etc/init.d/autotestd
chkconfig --add /etc/init.d/autotestd
service autotestd start

Executing using systemd (Fedora >= 15)

Copy the service file to systemd service directory. As root or using sudo:

sudo cp /usr/local/autotest/utils/autotestd.service /etc/systemd/system/

Make systemd aware of it:

sudo systemctl daemon-reload

Start the service:

sudo systemctl start autotestd.service

Check its status:

autotestd.service - Autotest scheduler
 Loaded: loaded (/etc/systemd/system/autotestd.service)
 Active: active (running) since Wed, 25 May 2011 16:13:31 -0300; 57s ago
 Main PID: 1962 (autotest-schedu)
 CGroup: name=systemd:/system/autotestd.service
 ├ 1962 /usr/bin/python -u /usr/local/autotest/scheduler/autotest-scheduler-watcher
 └ 1963 /usr/bin/python -u /usr/local/autotest/scheduler/autotest-scheduler /usr/local/autotest/results

Executing manually using screen (not recommended)

You can execute the babysitter scripter through, let’s say, nohup or
screen. It is important to remember that by design, it’s better to
create an ‘autotest’ user that can run the scheduler and communicate
with the machines through ssh. As root:

yum install screen

As autotest:

screen
/usr/local/autotest/scheduler/autotest-scheduler-watcher

You can even close the terminal window with screen running, it will keep
the babysitter process alive. In order to troubleshoot problems, you can
pick up the log file that autotest-scheduler-watcher prints and follow it
with tail. This way you might know what happened with a particular
scheduler instance.

Client Installation Steps

Clients are managed in the tab hosts of the web frontend. It is important
that you can log onto your clients from your server using ssh without
requiring a password.

Setup password-less ssh connection from the server to this host (client)

As autotest, on the server, create a RSA key in the following way:

ssh-keygen -t rsa

Then, still on the server, and as autotest, copy it to the host:

ssh-copy-id root@your.host.name

Import tests data into the database

You can import all the available tests inside the autotest client dir by
running the test importer script as autotest:

/usr/local/autotest/utils/test_importer.py -A

If you did clone the autotest repo with –recursive, the virt test will be
among the imported tests.

Troubleshooting your server

You can refer to the
Autotest Troubleshooting Documentation <../sysadmin/AutotestServerTroubleshooting>
documentation for some commonly reported problems and their root causes.

Virt Test specific configuration

Please refer to the shared Autotest Virt Documentation <../sysadmin/AutotestServerVirt>

See also

	The Parser <../scheduler/Parse> is used to import results into TKO

	The Web Frontend Docs <../sysadmin/WebFrontendHowTo> talks about using the
frontend

	The Web Frontend Development Docs <../developer/WebFrontendDevelopment>
talks about setting up for frontend development work - you do not want to
develop through Apache!

Autotest Server Install - Set up MySQL

Let’s say you have mysql installed and unconfigured, and that you have chosen
a password, that we’ll call MYSQL_ROOT_PASS and a password for the autotest
user, that we’ll call MYSQL_AUTOTEST_PASS. The autotest-server-install.sh script
will set them to the same value, but if you are doing things manually, you are
free to choose.

Make sure that mysql daemon is up and starts on each boot. As root:

/sbin/service mysqld restart
chkconfig mysqld on

The next step is automated through the script autotest-database-turnkey, so
if you want to use it, the process should be as simple as:

/usr/local/autotest/installation_support/autotest-database-turnkey --check-credentials --root-password MYSQL_ROOT_PASS -p MYSQL_AUTOTEST_PASS

If you want to do it manually, provide mysql server with password by running
the following command (as autotest or root, you choose):

mysqladmin -u root password MYSQL_ROOT_PASS

Now, to get a mysql query prompt, type

mysql -u root -p

The following commands will set up mysql with a read-only user called nobody
and a user with full permissions called autotest with a
password MYSQL_AUTOTEST_PASS, and must be typed on mysql’s query prompt:

create database autotest_web;
grant all privileges on autotest_web.* TO 'autotest'@'localhost' identified by 'MYSQL_AUTOTEST_PASS';
grant SELECT on autotest_web.* TO 'nobody'@'%';
grant SELECT on autotest_web.* TO 'nobody'@'localhost';
create database tko;
grant all privileges on tko.* TO 'autotest'@'localhost' identified by 'MYSQL_AUTOTEST_PASS';
grant SELECT on tko.* TO 'nobody'@'%';
grant SELECT on tko.* TO 'nobody'@'localhost';

If you use safesync for migrating the databases you will want to
grant access to the test database. Note that this is entirely optional.

GRANT ALL ON test_autotest_web.* TO 'autotest'@'localhost' identified by 'MYSQL_AUTOTEST_PASS';

If you want mysql available to hosts other than the localhost, you’ll
then want to comment out the bind-address = 127.0.0.1 line in the
/etc/mysql/my.cnf.

In addition, you may want to increase the
set-variable = max_connections to something like 6000, if you’re
running on a substantial server. If you experience scalability issues, you
may want to log slow queries for debugging purposes. This is done with the
following lines:

log_slow_queries = /var/log/mysql/mysql-slow.log # Log location
long_query_time = 30 # Time in seconds before we consider it slow

Advanced setups may wish to use
MySQL Replication

Autotest Server/Scheduler/WebUI Install script

We have developed a script to automate the install steps for the autotest
server, scheduler and web UI on a (Fedora 16/17/RHEL6/Ubuntu) server.
Debian should also work, but it was not tested.

The recommended installation procedure is:

	Make sure you have a freshly installed system that we support (a VM, for example).

	Pick this script straight from github

curl -OL https://raw.github.com/autotest/autotest/master/contrib/install-autotest-server.sh

Debian/Ubuntu: don’t forget to first install curl with apt-get install curl.

Then make it executable and execute it:

chmod +x install-autotest-server.sh
./install-autotest-server.sh

The command above will show you the script options. Usually you’ll
want to provide the options -u for the autotest user password, and
-d for the autotest database password. The script is going to set
all passwords, permissions and dependency installing, and it should
log every step of the way, reporting a log file that you can look
at.

./install-autotest-server.sh -u password -d password
15:59:21 INFO | Installing the Autotest server
15:59:21 INFO | A log of operation is kept in /tmp/install-autotest-server-07-23-2013-15-59-21.log
15:59:21 INFO | Install started at: Tue Jul 23 15:59:21 BRT 2013
15:59:21 INFO | /usr/local free 37G
15:59:21 INFO | /var free 37G
15:59:21 INFO | Installing git packages
...

Hopefully at the end the script will report a URL that you can use to access
your newly installed server. The script should also take care of importing
existing control files, so they appear right away in the server.

Autotest Server Troubleshooting

Here we have some common problems in the server/scheduler/web UI and solutions
for thems. Also, we have info on log files you can look after.

Checking scheduler logs

You can find them in the autotest logs directory. As autotest or root:

tail -f /usr/local/autotest/logs/scheduler-[timestamp].log

Status is queing

The scheduler is not running. You are strongly advised to use the init
scripts mentioned in the AutotestServerInstall or AutotestServerInstallRedHat
documentation. If you are using them, restarting the scheduler should be simple:

service autotestd start

Status is pending

Usually it is a result of scheduler crash due to lack of disk space on
Autotest server, so you might want to check that.

Setting up an Autotest Drone (Results Server)

After completing this document you should have at the very minimum two
servers setup. The Autotest system you had setup initially and another
system for storing the results of job runs. This document assumes that
you have a working Autotest server as described in: Autotest Server
Install.

Benefits of setting up a results server

	Offload all jobs to one central location that is only used for
storing the results.

	Offload the main autotest server from having to also store results
copied back to it.

	Off site copy of results.

The benefits of setting up a results server are most apparent when you
have Autotest running jobs on multiple drones.

Global Configuration Variables

In the global_config.ini SCHEDULER section there
are some variables you can use to tell Autotest where to archive
results:

[SCHEDULER]
results_host: localhost
results_host_installation_directory:

	results_host defines the host where results should be offloaded.
This is typically localhost and basically tells Autotest not to copy
files anywhere else after a job completes.

	results_host_installation_directory is used to specify a custom
directory if it is required. By default it uses whatever the Autotest
server uses on the scheduler commandline. Most people will want to
leave this at default.

Our drone system in general allows for more flexibility using “special
variables” that do not exist in the default global_config.ini but can
be used to change the behavior of the system. Below will be an example
of using the HOSTNAME_username directive to make all results
collection be done as a user I specify.

Updated [SCHEDULER] configuration

[SCHEDULER]
 max_processes_per_drone: 1000
 max_jobs_started_per_cycle: 100
 max_parse_processes: 5
 max_transfer_processes: 50
 drones: localhost
 drone_installation_directory: /usr/local/autotest
 results_host: dumpster
 results_host_installation_directory:
 dumpster_username: offloader**
 secs_to_wait_for_atomic_group_hosts: 600
 reverify_period_minutes: 0

With the above settings, all jobs from all drones (including a regular
localhost drone) will be copied to hostname dumpster using username
offloader. The username setting is using the aforementioned special
variable. If I did not use dumpster_username the results server would
have data copied to it as the user the autoserv process is run under
(Which in most cases would be autotest).

	Make sure you keep the global_config.ini files in sync

throughout your whole Autotest system otherwise you may experience very
strange issues.

Software Required on the Results Server

A results server requires all the same software a Drone requires or a
local Autotest server without MySQL. You will need a full Autotest
installation on the system. If you are not doing anything special to
synchronize all of your Autotest Server Systems then you can simply
rsync your current server Autotest directory to your Results server.

Example Rsync command:

rsync -av /usr/local/autotest dudicus:/usr/local/autotest

How the two installations are kept in sync is the job of the system
administrator we do not attempt to solve this problem.

Start/Restart the Scheduler

Once you have the following steps complete restart the scheduler and you
will be running with a results server

	Your global configuration has been updated

	You’ve installed all required software on the results server

	An updated global_config.ini as described above is on all of your
Autotest System Servers.

Restart your scheduler and run a few jobs to make sure files are showing
up.

Results will show up in your autotest directory under results. For
example /usr/local/autotest/results/

Tips and Tricks

	Often times corporate accounts are weighed down with other
authentication methods like LDAP that can make transfers very slow.
Try setting up a local account that uses your autotest users ssh key.

	SSH connections are dropped when a large job completes: Modify the
following variable in your /etc/sshd_config: MaxStartUps XXXX.
This will allow half complete connections to wait around until your
system is available to process all of the connections.

System Administration Tips and Tricks

This page is for random system administration tips that don’t fit
elsewhere. Over time as these gather we can organize them better.

Message of the Day

If you create a file motd.txt in the root Autotest directory, its
contents will be displayed at the top-right corner of AFE and TKO. You
can include HTML. AFE and TKO will refresh the MOTD automatically every
so often.

Virt Test specific configuration

Important server configuration for virt-test

The way the virt control file is organized right now requires the user to
change one value on global_config.ini file, that should be at the top
of the autotest tree.

As autotest, please change the following configuration value
from what’s default to make it look like this:

[PACKAGES]
serve_packages_from_autoserv: False

By default, the above value is True. To make a long story short,
changing this value will make autoserv to copy all tests to the server
before trying to execute the control file, and this is necessary for the
kvm control file to run. Also, we need the other tests present to run
autotest tests inside guests.

Update virt test config files

Run /usr/local/autotest/client/tests/virt/qemu/get_started.py as autotest
to be guided through the process of setting up the autotest config files.
Edit the files to suit your testing needs.

The server is now ready to use. Please check out the following sections
to learn how to configure remote hosts and execute the KVM test suite.

Analyze virt job execution results

The results interface provided by autotest allowing SQL query based filtering,
usable display of logs and test attributes and graphing capabilities.

However, any autotest job also produces a detailed, formatted html report
(job_report.html) per remote host tested in addition to standard autotest
logs, where kvm-autotest results data is nicely organized. The html reports are
stored in the job main results directory (accessible via raw results logs link).

Setting up a distributed Autotest production environment

This document aims to discuss how to setup a distributed autotest
environment.

The problem

The standard Autotest production environment uses a single server to do
many things:

	Run MySQL for the frontend and results databases

	Run Apache for the AFE and TKO web interfaces

	Run a scheduler to coordinate job executions

	Run many Autoserv processes to execute tests on remote machines

	Store all results in a single results repository directory

As the size of an Autotest server grows, and in particular as the number
of concurrent machines under test grows, this single-server setup can
run into scalability limitations quickly. In order to allow continued
growth of an Autotest production environment, the Autotest system
supports breaking out these roles onto different machines. Once properly
configured, the difference should be nearly invisible to users.

MySQL and Apache

Autotest has always been capable of using a remote database server -the
global_config.ini file contains parameters for database hostname. The
web interfaces are almost exclusively dependent on the database, so they
too are fairly simple to break out.

Scheduler, Autoserv and the Results Repository

The main complexity in a distributed setup arises in the scheduler. The
scheduler is responsible for reading the database, executing Autoserv
processes, and gathering the results into a central location. So the
scheduler must be capable of executing Autoserv processes on remote
machines and transferring the results files to a separate results
repository machine. This behavior is achieved through the following
global_config parameters:

	
	`` drones ``: a “drone” is a machine that will be used to execute

	Autoserv processes. This parameter should be a comma-separated list
of hostnames for machines to be used as drones.

	
	`` results_host ``: the hostname of the machine to use as the results

	repository.

Any machine used as a drone or results repository must be set up for
passwordless SSH from the scheduler, just as for machines under test. In
addition, these hosts must have the results directory created with
read/write permissions for the SSH user (the results directory is passed
to the scheduler on the command line). They must also have Autotest
installed at the location given in the
`` drone_installation_directory `` global_config option. This may be
the same as the results directory. Finally, since the parser will run on
the drones, they must have TKO database parameters properly configured
in global_config.ini.

Note that `` localhost `` is a valid hostname for either option, and
when using localhost, SSH is not required to be set up. For a
single-server setup, both options would simply be set to
`` localhost ``.

See GlobalConfig for more options that can be
used.

Viewing results files from the web

With the above setup, your jobs will execute successfully, but viewing
results through the web remains a challenge because the logs may not
reside on the same machine as Apache. For this reason, both AFE and TKO
perform all log retrieval through the `` tko/retrieve_logs.cgi ``
script. This script reads the global_config options above, as well as a
third:

	
	`` archive_host `` (optional): an additional hostname to check for

	results files when they cannot be found elsewhere. System
administrators may manually move results off of the main results
repository to this machine.

`` retrieve_logs.cgi `` attempts to fetch the requested log file from
the results repository, then from each drone, and finally from the
archive host, until it succeeds. If it succeeds, it redirects the user
to the appropriate host. For this to work properly, all drones, the
results repository host, and the optional archive host must all be
running Apache with the results directory mapped to `` /results ``.

Recommendations

So now you know how to configure a distributed Autotest environment. But
how do you figure out what distribution of components is necessary? Here
are a few general tips:

	The most important thing to do is to run the Autoserv processes on a
different machine than MySQL. These components are usually the two
biggest resource hogs. Each Autoserv process should not be too
resource-intensive, but since there will be at least one process per
host under test, there can be a huge number of Autoserv processes
running concurrently.

	Since the web interfaces and the scheduler depend heavily on the
database, it can be beneficial to run Apache and the Scheduler on the
same machine as MySQL. Since Apache and the Scheduler are not very
resource intensive, this is generally not a performance problem.

	The drones will often end up being the bottleneck in a large system,
and the Autoserv processes will most likely be IO-bound. Therefore,
configuring drones with performance-enhancing RAID setups can provide
a dramatic increase in system capacity.

	For system reliability, it is often beneficial to isolate drones for
running Autoserv processes only. Large numbers of Autoserv processes
are the most likely components to crash the system. With dedicated
drones, an machine crash due to Autoserv will not affect the web
interfaces, and if multiple drones are being used, jobs can continue
to run uninterrupted on other drones.

Using the autotest package management with autoserv

This document will go over how to setup your Global
Configuration to use your Autotest server as a
packaging repository. After that there will be a section going over how
to add another seperate machine as a remote repository for packages.

By setting up packaging in Autotest you can reduce the amount of files
transferred to clients running jobs which generally descreases the
amount of setup time Autotest has to do for clients.

Setting up your Autotest server as a packaging repository

This section assumes you already have AFE and TKO running properly as
outlined in the Autotest Server Install
documentation, if this isn’t the case it is left up to the reader to
ensure Apache is running and able to serve files out of the directory
they reference in the fetch_locations below.

In order for packaging to work we need to add the following section to
our global config.

[PACKAGES]
fetch_location: http://your_autotest_server/packages/builtin, http://your_autotest_server/packages/custom
upload_location: /usr/local/autotest/packages/builtin
custom_upload_location: /usr/local/autotest/packages/custom/
custom_download_location: /usr/local/autotest/custom_packages

Explanation:

fetch_location: is what the client uses when downloading tests. The
order that these are listed are the order they are used by the Autotest
client. We have an entry for both custom and builtin tests since
Autotest doesn’t directly discern between custom packages and builtin
packages. We keep them separate so we have to list both locations. It is
up to you to keep these separate but we prefer to do this for clarity.

upload_location: /usr/local/autotest/utils/packager.py uses this
location to determine where it needs to upload files. For example when
you run packager.py upload –all all tests profilers and dependencies in
your tree will be archived and copied either via scp or cp (depending on
if it is local or remote)

custom_upload_location: This is for custom tests and kernels
uploaded through the frontened or via the command line.

custom_download_location: This is the location where Autotest puts
packages users upload through the frontend before it is uploaded to your
http repository.

Adding a SSH/HTTP Repository

For a remote repository we use SSH and HTTP. SSH For transferring files
to the machine and http to serve the tests to the clients running jobs.
We chose HTTP for lower overhead transfers (for files that are extremely
large).

This step assumes the user is familiar with setting up Apache (At the
very least barebones to serve files) and keyless SSH.

Requirements:

	Passwordless SSH for the user defined http repo below

	Apache setup to serve files out of the directory specified below (In
this case /var/www/packages/builtin)

Using the above PACKAGES section we add in three new pieces of
information

	fetch_location:
http://your_http_repo_hostname/packages/builtin,
http://your_http_repo_hostname/packages/custom

	upload_location:
ssh://root@your_http_repo_hostname/var/www/packages/builtin

	custom_upload_location:
ssh://root@your_http_repo_hostname/var/www/packages/custom

[PACKAGES]
fetch_location: http://your_http_repo_hostname/packages/builtin, http://your_http_repo_hostname/packages/custom, http://your_autotest_server/packages/builtin, http://your_autotest_server/packages/custom
upload_location: /usr/local/autotest/packages/builtin, ssh://root@your_http_repo_hostname/var/www/packages/builtin
custom_upload_location: /usr/local/autotest/packages/custom/, ssh://root@your_http_repo_hostname/var/www/packages/custom
custom_download_location: /usr/local/autotest/custom_packages

Scheduler

	Scheduler specification
	Basic flow

	Results files

	Distributed implementation

	See Also

	Job and Host Statuses
	Job Statuses

	Host Statuses

	See also

	Advanced Job Scheduling
	Metahost entries (“Run on any...”)

	“Only if needed” labels

	Atomic Groups

	Autotest Scheduler Roadmap

	General Overview
	Versioning

	Work Required to Implement this Specification

	Library Design

	Parser Algorithm

	Database Handling

	TKO parse documentation

Scheduler specification

Basic flow

[image: ../../_images/scheduler_flow.png]

Results files

	The scheduler always creates a “job directory”, results/<job tag>

	For asynchronous jobs, the scheduler creates a results/<job
tag>/<hostname> directory for each host and runs one instance of
autoserv for each host with these per-host directories as results
directories.

	For synchronous jobs, the scheduler creates a results/<job
tag>/groupN directory for each group of hosts formed, as defined by
the job’s sync_count. N is a numeric index starting at zero. The
scheduler runs an instance of autoserv for each group of machines
with these per-group directories as results directories.

Metahosts always get queue.log.<id> files created in the job directory
(results/<job tag>). These logs contain a single line for each time a
metahost is assigned a new host or cleared of its host. Each line
includes a timestamp.

Verify/repair/cleanup information is handled like so:

	During execution of verify/repair/cleanup, Autoserv output is
directed to a temporary file under the results/drone_tmp directory.

	When Autoserv completes, this file is copied to the host logs
directory under results/hosts/<hostname>.

	If the task fails and causes job failure, the log is also copied to
the execution results directory (results/<job tag>/<hostname or
groupN>). This happens if:

	The task was a pre-job cleanup or verify

	The task failed

	The correspond queue entry was scheduled for a particular host,
not a metahost (for metahosts, the queue entry would simply choose
a new host, so it wouldn’t make sense to include the verify
failure as part of the job).

If the subsequent repair succeeds, the log file is removed and the
job is restarted.

The scheduler only creates a .machines file for asynchronous
multi-machine jobs. It creates this file on the fly by appending each
hostname to this file immediately before running the main autoserv
process on that host. For synchronous jobs, autoserv creates the
.machines file itself.

Distributed implementation

In order to support distributed setups (see
DistributedServerSetup), the scheduler
performs much of its work through the drone_manager module. A “drone”
is a machine on which Autoserv is executed, which is not necessarily the
machine on which the server is running. Here is a guide to this
implementation:

	Overview
	All OS-dependent calls in the scheduler have been extracted into
an interface on the drone_manager.DroneManager? class. This
includes filesystem access and process execution, killing and
monitoring.

	DroneManager? methods queue up actions to perform on drones.

	The scheduler calls DroneManager?.refresh() at the beginning of
each tick, which connects to each drone and gathers information on
running processes.

	The scheduler calls DroneManager?.execute_actions() at the end of
each tick, which connects to each drone and executes all queued
actions.

	DroneUtility?
	The drone_utility.DroneUtility? class contains implementations of
all the OS-dependent actions.

	The drone_utility.MethodCall? class abstracts a call to a method
on DroneUtility?.

	DroneUtility?.execute_calls() accepts a list of MethodCall?
objects and returns a list of results, along with any warnings
that were generated.

	The drone_utility module is executable as a script. It accepts a
filename on the command line and reads a list of MethodCall?
objects from that file in pickled format. This implements a simple
batched RPC mechanism for DroneUtility?.

	Drone objects
	The drones module provides implementations of the
drones._AbstractDrone interface. AbstractDrone? allows the client
to queue up method calls to a DroneUtility? instance and execute
them on the drone machine. There are two implementations:
	a _LocalDrone class which simply imports drone_utility and
calls methods directly, and

	a _RemoteDrone class which executes drone_utility on a remote
host using the server.hosts.ssh_host.SSHHost class. It pickles
the call list into a file, sends the file to the remote host,
and executes drone_utility remotely on that file.

	The drones.get_drone(hostname) factory method is used to retrieve
a drone object.

	DroneManager?
	DroneManager? maintains a list of drone objects, one for each
drone as well as one for the results repository host. Methods on
DroneManager? are implemented by queuing up method calls on the
appropriate drone objects. DroneManager?.execute_actions() then
executes all queued calls for each drone in turn.

	DroneManager? also contains limited handling for dead drones.

See Also

	SchedulerAutoservInteractions

Job and Host Statuses

Job Statuses

	Queued – the job is waiting for machines to become ready and/or
accessible, or the scheduler has simply not picked up the job yet. A
job can go back to this state from Verifying when a machine fails
verify and goes to repair.

	Verifying – the job is going through pre-job cleanup and/or
verification. See host statuses Cleaning and Verifying. This
is controlled by the job options reboot before and skip verify
and well as by Host Protections
(namely Do not verify).

	Pending – the job is ready to run on this host but is waiting
for other hosts because it’s a synchronous job.

	Starting – the job is about to start. Jobs should only stay in
this state when the system is at its capacity limit.

	Running – the job is running (Autoserv is actively running on
the server).

	Gathering – after Autoserv is aborted (or otherwise unexpectedly
killed), a job will enter this state to gather uncollected logs and
crash information from the machine under test. This stage will also
wait several hours for the machine to come back if it went down.

	Parsing – the parser is running a final reparse of job results.
This stage should be very brief unless the system is under heavy
load, in which case parses are throttled by the results database.

	Completed – the job is over and Autoserv completed successfully
(note that functional tests may have failed, but the job ran all
tests without error).

	Failed – the job is over and Autoserv exited with some failure.

	Aborted – the job is over and was aborted.

Host Statuses

	Ready – the host is idle and ready to run.

	Cleaning – the host is running pre-job, post-job, or post-abort
cleanup (see job options reboot before and reboot after). The
cleanup phase includes rebooting the host and, optionally,
site-specific cleanup tasks.

	Verifying – the host is running pre-job or post-abort verify
(see job option skip verify). The verify phase checks for basic
connectivity, disk space requirements, and, optionally, site-specific
conditions.

	Repairing – the host is undergoing attempted repair; this
includes rebooting, waiting for the host to come up, clearing off
disks, and, optionally, site-specific extensions. This is controlled
by Host Protections.

	Pending – see the job state Pending.

	Running – the host is being held for a running job. This
includes time that Autoserv is actually running (job state
Running) as well as the job Gathering phase.

	Repair Failed – the host failed repair and it currently assumed
to be in an unusable state. Scheduling a new job against this host
will reset it to the Ready state.

See also

	The flowchart at
SchedulerSpecification illustrates
how hosts and jobs move through these states.

	Web Frontend Howto
documents the above-mentioned job options.

Advanced Job Scheduling

This page documents some of the more advanced things that the scheduler
is capable of.

Metahost entries (“Run on any...”)

Jobs can be scheduled to run against any host with a particular label.
This is used through the frontend with the “Run on any...” box (for
example, “run on any x86”). Such entries are called metahost entries.
Metahost entries will be assigned to eligible and ready hosts
dynamically by the scheduler.

“Only if needed” labels

If a label is marked only if needed, any host with that label is not
eligible for assignment to metahost entries unless

	the job’s dependency labels includes that label, or

	the metahost is against that particular label.

Note that such hosts can still be used by any job if selected explicitly
(i.e. not through a metahost).

Atomic Groups

An atomic group is a group of machines that must be scheduled together
for a job. Regular jobs cannot be scheduled against hosts within these
groups; they must be used together.

Atomic groups are created in the admin interface to specify classes of
atomic groups of machines (for example, “x86-64 rack” might be an atomic
group). Labels can then be marked as instances of a particular atomic
group; in this case, a label would include all machines for a particular
group (for instance, “x86-64 rack #1”). Finally,
machines can be added to these labels to form the actual groups.

Example

As an example, assume you have twenty hosts, ten x86-64 and ten i386.
You wish to run a test that requires a rack of five machines. You might
do the following:

	Create two atomic groups, “x86-64 rack” and “i386 rack”.

	Create four labels: “x86-64 rack #1” and “x86-64 rack #2” are both
labels with atomic group type “x86-64 rack”, and likewise for i386.

	Assign five x86-64 hosts to the “x86-64 rack #1” label, and the
remaining five to the “x86-64 rack #2” label. Likewise for i386.

Now, you could run a job with synch count = 5, and specify that you want
to run against one atomic group of type “x86-64 rack” and one of type
“i386 rack”. The scheduler will dynamically pick a rack of each type
that is ready to run the job. Users trying to schedule regular jobs
against hosts within these groups will be unable to do so; they will
remain reserved for jobs intended for the entire group.

Variable host counts

Some tests can run against a variable number of machines, and you may
with to run such a test against all the ready machines within an atomic
group, within some bounds. The scheduler can do this for you – at job
run time, it will verify all machines in the group and use all the ones
that are ready. The following constraints are available:

	The “max number of machines” attribute on the Atomic Group specifies
the maximum number of machines to use at once.

	The job’s “synch count” attribute specifies the minimum number of
machines to use from the group. If fewer than this number are ready,
the job will be unable to run. Note that this behavior is unique to
jobs run against atomic groups – normally, synch count specifies the
exact number of machines to use, but with an atomic group, the
scheduler will use as many machines as are ready (up to the maximum).

Autotest Scheduler Roadmap

For the most part, the scheduler is now stable and its feature set is
satisfactory. There are a few features we’ll be adding soon:

	Maximum running job count - done

	Job timeouts done

	User-friendly status messages done

	Better automated repairs

	Multiple scheduler support (distributed execution) done

General Overview

The purpose of the parser is to take one or more directories of test
results and convert them into summary test results in the TKO database
to be available for more generic queries. The parser is primarily only
concerned with the status log for a test, since this is where the
summary of job and test passes (or failures) is stored, however it also
makes use of other result data (e.g. keyval entries) to help annotate
the test results with relevant information such as the kernel version
used for each test.

The parser is usable as a standalone script so that it can be run by
hand on complete results, however it is also importable and usable as an
in-process python library to allow for continuous parsing of partial
results without having to continually launch new processes and perform a
full re-parse every time new data is generated.

Versioning

We need to always be able to parse existing log data, while at the same
time providing for the capability in the future to change the logging
format to provide new capabilities and data. These types of changes will
generally require parser changes, and although in the ideal case we
could extend the parser in such a way that it can still parse both new
and old data, this may not always be possible (or may significantly
increase the difficulty of making the required changes). The
implementation of this specification is an example of this.

The version of the status log format should be written out by autoserv
(or whatever application is being used to generate job results) into the
job keyval files as the variable status_version. If the keyval is
unspecified then this implies version 0, the pre-specification version
of the parser, while the parser specified by this document is version 1.
Once the version is determined the results data should then be fed into
the appropriate parser library and pushed into the database.

In the long term, it may also be desirable to specify some from of
intermediate output that the parsers will produce to help isolate them
from changes in the backing database; the current approach of writing
out data manually will still make it difficult to change the schema as
every parser version would have to be changed, not just the “current”
version. However, at this time the only two versions in existence will
be writing data out to the same schema so putting in the development
time to build an intermediate output format would provide no immediate
benefits.

Work Required to Implement this Specification

This specification represents a description of how the parser ideally
SHOULD work, rather than a description of how it currently does work.
However, this specification can be implemented incrementally, requiring
the following work:

	Change Autotest to properly write out full kernel information during
the reboot.verify. The current code does output a kernel version, but
this does not handle cases where you are building kernels with custom
patches.

	Change Autotest to write the status_version entry out to the results
keyval files.

	Build a parser class that uses the library approach described in this
specification (a stateful parser object, separate out the reading of
files from the parser itself, allow it to be used in standalone and
in-process manner) but based on the existing parsing algorithm rather
than the new one proposed by this specification.

	Change autoserv to perform continuous parsing using the library
version of the parser.

	Implement a new parser class that uses the algorithm described in
this specification.

	Change the parser to auto-select either the new parser or the legacy
parser based on the value of status_version (0=legacy, 1=new) in the
results.

Once these steps are complete, a next possible step might be to move the
actual parsing of data (or at least the writing of parser data into the
database) back out of autoserv and into a separate process; however,
this separate process would be a single daemon shared between all
instances of autoserv on a machine, instead of the current model where a
parser process is launched every time the results are parsed. This would
avoid the current problem where a large number of database connections
are consumed by the parsing tasks.

Library Design

The base of the parser will be a stateful object designed for parsing
the results of a single job (i.e. a single-machine job, or one machine
of a multi-machine asynchronous job). It will in no way be responsible
for accessing the results directory; this will be the job of the calling
code. This should make it easier to embed the parser into autoserv
itself. It should also isolate the parser from the details of how
watching for new data is being performed.

Given the results directory of a completed test, the parser can find all
of the information it needs in the following places:

	status.log - the actual status logs come from here, this is the core
of what the parser needs

	keyval - most of the job data comes from here, specifically:
	username - the user who ran the job

	label - the label of the job

	machine - the hostname that this specific job was run on

	job_queued, job_started, job_finished - timestamps from when
the job was queued, started and finished

	owner - the owner of the test machine

	<subdir>/keyval - some additional test meta-data comes from here,
namely:
	version - the version number of the test

	<subdir>/results/keyval - optional test data regarding iterations
comes from here

When being used as a standalone process the parser will need to be able
to access this data and so provides functions for retrieving it. It also
provides a main() function that allows you to run the parser:

	on a single machine results directory (i.e. a single-machine job, or
a single machine of a multi-machine job)

	on a multi-machine results directory

	on a top-level results directory, parsing all the results of an
entire results repository

Parser Algorithm

The general algorithm of the parser is most easily summarized by the
following diagram:

[image: ../../_images/parser_algorithm.png]

For tracking the “current” status, the parser has to use a stack of
statuses. Manipulations of this stack are included in some of the
transitions in the diagram, with the following operations:

	push(status) pushes status onto the stack

	pop() pops the top status off of the stack

	update(status) replaces the top of the stack with status if and only
if status is “worse” than whatever is already on top

The update operation uses the concept of some statuses being “worse”
than others. The idea behind this is that if a bunch of tests are being
run as part of a single, cohesive group (or a single test produces
multiple status lines of output) then the results should be combined in
such a way that negative results poison the results of the entire set.
So if some results in the group are GOOD and some are FAIL, then the
entire group should be considered a FAIL. The expected set of statuses
is, from “best” to “worst”:

	GOOD - the operation was successful

	WARN - something suspicious has happened, but not a clear failure

	FAIL - the test has failed

	ABORT - something catastrophic has happened, and the entire job is
terminating

Conceptually, the parser operates on a stream of lines. In a standalone
parser process where it just performs a full re-parse and then exits the
parser will simply operate on the results of file.readlines in a single
shot. However, it should be just as easily usable in an in-process,
continuous parsing fashion where it is fed status lines as they are
generated and maintains its state until the application (e.g. autoserv)
indicates that the job is finished and there are no more results.

Database Handling

There already exists code in tko/db.py for performing database lookups,
inserts and deletes on the relevant objects as well as for looking up
the appropriate authentication information in the Autotest
configuration, so the parser will simply make use of this. The insertion
of parsed results will not be performed in a transactional fashion
in order to facilitate continuous parsing. The expected data flow is
simply:

	Delete any existing results job & test data.

	Insert job entry.

	Insert test entries as tests complete in the status log.

If a transaction mechanism needs to be implemented on top of this then
that should be straightforward to do manually.

TKO parse documentation

usage: parse [options]

options:
 -h, --help show this help message and exit
 -m Send mail for FAILED tests
 -r Reparse the results of a job
 -o one: parse a single results directory
 -l LEVEL levels of subdirectories to include in job name

Typical usages:

To populate the database with ALL results.

tko/parse $AUTODIR/results

To recreate the database (from some corruption, etc). First drop all the
tables, and recreate them. Then run:

tko/parse -r $AUTODIR/results

To reparse a single job’s results

tko/parse -r -o $AUTODIR/results/666-me

To reparse a single machine’s results within a job:

tko/parse -r -l 2 -o $AUTODIR/results/666-me/machine1

The -l2 here makes it create the job as “666-me/machine1” instead of
“machine1”, which is normally what we want. it just says “take the last
2 elements of the path, not the last one”.

Developer

	Downloading the Source

	Autotest’s Directory Structure
	Where should I put the files I’m adding?

	Autotest Code Submission Check List
	Github Pull Requests

	Subscribe to the mailing list

	Running Unit tests

	Running pylint

	Running reindent.py

	Breaking up changes

	Patch Descriptions

	Follow control file specification

	Follow Coding Style

	Git Setup

	Example Patch

	How to use git to contribute patches to autotest

	Life cycle of an idea in autotest

	Workflow Details

	Topic Issues

	Topic Issue States

	Pull Requests

	Pull Request Updates

	Mail List Publishing

	Autotest Test API
	Control files

	Client side tests

	Server side tests

	Multi-machine server side tests

	Submission common problems
	Gratuitous use of shell script inside a python program

	Use of the commands API, or os.system

	Use of backslashes

	Use of constructs that appeared in versions of python > 2.4

	Unconditional import of external python libraries

	Autotest requirements

	Autotest Design Goals
	Modules

	Key differences

	Autotest Maintenance Docs
	Quick primer to pull request maintenance

	Patch reviewing and devel branch update

	Autotest

	Pre-Reqs

	Tools

	Virt-Test

	Applying the code that was reviewed and looks ready for inclusion

	Policy enforcement

	Non fast forward updates

	Sync of the development branches

	Becoming a Maintainer

	Global Configuration
	CLIENT

	COMMON

	AUTOTEST_WEB

	AUTOSERV

	SERVER

	INSTALL_SERVER

	SCHEDULER

	HOSTS

	PACKAGES

	Adding site-specific extensions
	Adding site-specific extensions to the CLI

	Autotest status file specification
	General Structure

	Formal syntax and semantics specification

	Parsing Behaviour

	Autotest job results specification
	Single machine job output format

	Format of status file

	Multi-machine tests

	Scheduler behavior

	Documentation
	Pydoc

	Generate the HTML API documentation

	Autotest Unittest suite
	Setting up dependencies

	Web Frontend Development
	Basic setup

	Django server development

	GWT client development

	See Also

	Using the Autotest Mock Library for unit testing
	Setting up to use the code

	Stubbing out attributes

	Stubbing methods on classes

	Verifying external interactions of code under test

	Constructing mock class instances

	Isolating a method from other methods on the same instance

	Verifying class creation within code under test

	Convenient shortcuts for stubbing

	Stubbing out builtins

Downloading the Source

The main source is maintained on git and may be cloned as below:

git clone git://github.com/autotest/autotest.git

If you want to learn how to use git as an effective contribution tool, consider
reading GitWorkflow.

Autotest’s Directory Structure

	client: The autotest client. When using the autotest server, the
entire client dir is deployed to the machine under test.
	shared: All the files common to both autotest server and
the client are in this directory. It needs to be here, rather than
in the top level, because only /client is copied to machines under
tests. If you add new modules to the shared library. Your library
will then be importable as autotest.client.shared.mylibname.

	bin: The autotest core python files are all here. Also, any
libraries not shared with the server are here.

	tools: All executables besides autotest itself are here. This
includes helpers like boottool.

	tests: All the tests go here. Each test should be in a
directory, which we’ll call test_name. There should also be a
test_name.py file in that directory, which is the actual test.
In addition, a file named control should also be in that
directory to run the test with default paramaters. All other files
the test depends on (and optionally other control files) should be
in this directory as well.

	site_tests: Same as above but for Internal client side tests.

	profilers: Profilers are here. Profilers run during tests and
are not tied to any one test.

	conmux: This has conmux, which is a console multiplexer. This
allows multiple people to share serial concentrators and power
strips. Several different types of concentrators and strips are
supported, and new ones can be added by writing simple expect
scripts.

	Documenation: This wiki is generally more up to date, but there
are some old diagrams here.

	mirror: This is used for mirroring kernels from kernel.org.

	queue: This is an empty directory used for the file-system based
queueing system.

	results: This is an empty directory where results can sit.

	scheduler: The scheduler lives here. The scheduler spawns
autoserv instances to test new kernels.

	server: The autotest server (sometimes called autoserv).
Unlike the client, all the python files are just in the root dir.
(Should we move them?)
	doc: Some documentation files. Unfortunately, these are
largely out of date. The wiki’s your best bet for documenation.

	hosts: This contains all the host classes. SSHHost is what
most users will be using.

	tests and site_tests: These are the same as in the
client.

	tko: This is the web-based reporting backend for test.kernel.org

	ui: A script for generating control files.

Where should I put the files I’m adding?

Is this a generic module that will be useful on on both the client and
the server? Then put it in client/shared. Or, if this module is
providing site-specific functions for use on your local server, add the
name to the libraries variable in client/shared/site_libraries.

Are you adding code to the client? Then put it in client.
Remember that this code will only be accessible from other client code
(and client-side tests), not from server code. Even though the server
has a copy of the client, it generally avoids reaching into the client
to import code (except for a few special cases). If you want to use your
client code from the server as well then put it in the shared library,
not on the client.

Are you adding code on the server? If it’s a new kind of host, add
it in server/hosts. Be sure to add an import for you new kind of host to
server/hosts/__init.py__, since the server code will import host classes by
pulling in the whole host package, rather than importing classes from
specific submodules.

Are you adding tests? Public client side tests should be added in
client/tests/<name>. Private client side tests go in
client/site_tests/<name>. Server-side tests should go into
server/tests/<name> and again for private server side tests
server/site_tests/<name>.

Autotest Code Submission Check List

This document describes to contributors what we are looking for when we
go through submitted patches. Please try to follow this as much as
possible to save both the person reviewing your code as well as yourself
some extra time.

Github Pull Requests

In order to keep code review in one place, making the work of our maintainers
easier, we decided to make pull requests the primary means to contributing to
all projects inside the autotest umbrella.

That means it is highly preferrable to send pull requests, rather than patches
to the mailing list. If you feel strongly against using pull requests, we’ll
take your patches, but please consider using the recommended method, as it is
considered nicer with the maintainers.

This documentation on github pull requests [https://help.github.com/articles/using-pull-requests]
is complete and up to date, it’ll work you through all details necessary. The
bottom line is that you’ll fork virt-test or autotest_remote_unittest, create
a working branch, push changes to this branch and then go to the web interface
to create the request.

Subscribe to the mailing list

That’s important. See the link in the contact info documentation.
Even though we don’t use the mailing list for patch review, we still discuss
RFCs and send announcements to it.

Running Unit tests

Regardless of what you change it is recommended that you not only add
unittests but also run the unittest suite of each project to
be sure any changes you made did not break anything. In order to install
all the deps required for unittests, please check
the unittest suite docs.

Example (autotest):

[foo@bar autotest]$ utils/unittest_suite.py --full
Number of test modules found: 65
[... lots of output ...]
All passed!

Example (virt-test):

[foo@bar virt-test]$ tools/run_unittests.py --full
Number of test modules found: 22
[... lots of output ...]
All passed!

Running pylint

Another tool we use to insure the correctness of our code is pylint. Due
to the way imports have been implemented in the autotest code base a
special wrapper is required to run pylint.

The file is located in utils/run_pylint.py. The virt-test version is in
tools/run_pylint.py.

Simply run the command from your code directory and the rest is taken
care of.

Example of running on a source file with warnings:

[lmr@freedom autotest]$ utils/run_pylint.py -q client/job.py

Good. Same process, now with an error I introduced:

[lmr@freedom autotest]$ utils/run_pylint.py -q client/job.py
************* Module client.job
E0602:175,14:base_client_job._pre_record_init: Undefined variable 'bar'

Here is the error, an undefined variable:

[lmr@freedom autotest]$ git diff
diff --git a/client/job.py b/client/job.py
index c5e362b..8d335b4 100644
--- a/client/job.py
+++ b/client/job.py
@@ -172,6 +172,7 @@ class base_client_job(base_job.base_job):
 As of now self.record() needs self.resultdir, self._group_level,
 self.harness and of course self._logger.
 """
+ foo = bar
 if not options.cont:
 self._cleanup_debugdir_files()
 self._cleanup_results_dir()

So, pylint is a valuable ally here, use it!

Running reindent.py

Yet another tool that we use to fix indentation inconsistencies
(important thing to notice when you’re doing python code) is
utils/reindent.py (autotest) or tools/reindent.py (virt-test).
You can use the script giving your files as an argument, so it will prune
trailing whitespaces from lines and fix incorrect indentation.

Breaking up changes

	Submit a separate patch for each logical change (if your description
includes “add this, fix that, remove three other unrelated things”;
probably bad).

	Put a summary line at the very top of the commit message, explaining
briefly what has changed and where.

	Put cleanups in separate patches than functional changes.

	Please set up your git environment properly, and always sign your
patches using commit -s.

Patch Descriptions

Patch descriptions need to be as verbose as possible. Some of
these points are obvious but still worth mentioning. Describe:

	The motivation for the change - what problem are you trying to fix?

	High level description / design approach of how your change works
(for non-trivial changes)

	Implementation details

	Testing results

Follow control file specification

All tests must follow the control file specification Refer to the
Control Requirements section. In virt-test, you don’t
usually need to write control files, so feel free to skip this if you’re developing
virt-test.

Follow Coding Style

Autotest and virt-test (mostly) follow PEP8, but it’s always good to take a
look at the coding style documentation [https://github.com/autotest/autotest/blob/master/CODING_STYLE].

Git Setup

Please make sure you have git properly setup. We have a fairly brief and descriptive
document explaining how to get the basics setup here. In
particular, tend to stick to one version of your written name, so all your
contributions appear under a same name on git shortlog. For example:

John Doe Silverman

or

John D. Silverman

Please do choose between one of them when sending patches, for consistency.

Example Patch

This is a good example of a patch with a descriptive commit message.

commit 37fe66bb2f6d0b489d70426ed4a78953083c7e46
Author: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Date: Thu Apr 26 03:38:44 2012 +0000

 conmux/ivm: use immediate reboot rather than delayed

 Delayed reboots use EPOW, which does not always result in a shutdown of
 the LPAR. Use the more sever immediate shutdown, to ensure the LPAR goes
 down. This matches the HMC code.

 Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>

How to use git to contribute patches to autotest

Git is a powerful revision control system designed to make contributing
to open source projects simple. Here’s how you can contribute to
autotest easily using git:

1) Make sure you have configured git to automatically create your
signature on the commits you make inside your local tree. The following
is an example script to do it, just edit replacing your name, email and
choosing all aliases you want. Needless to say that once you run it, the
configs are persistent (written to the git config files), so you only
need to do this once.

#!/bin/bash
personalize these with your own name and email address
git config --global user.name "John Doe"
git config --global user.email "john.doe@foo.com"

colorize output (Git 1.5.5 or later)
git config --global color.ui auto

colorize output (prior to Git 1.5.5)
git config --global color.status auto
git config --global color.diff auto
git config --global color.branch auto

and from 1.5.4 onwards, this will work:
git config --global color.interactive auto

user-friendly paging of some commands which don't use the pager by default
(other commands like "git log" already does)
to override pass --no-pager or GIT_PAGER=cat
git config --global pager.status true
git config --global pager.show-branch true

shortcut aliases
git config --global alias.st status
git config --global alias.ci commit
git config --global alias.co checkout

this so I can submit patches using git send-email
git config --global sendemail.smtpserver [your-smtp-server]
git config --global sendemail.aliasesfile ~/.gitaliases
git config --global sendemail.aliasfiletype mailrc

shortcut aliases for submitting patches for Git itself
refer to the "See also" section below for additional information
echo "alias autotest autotest-kernel@redhat.com" >> ~/.gitaliases

another feature that will be available in 1.5.4 onwards
this is useful when you use topic branches for grouping together logically related changes
git config --global format.numbered auto

turn on new 1.5 features which break backwards compatibility
git config --global core.legacyheaders false
git config --global repack.usedeltabaseoffset true

	git clone the autotest git mirror repo:

git clone git://github.com/autotest/autotest.git
cd autotest

	create a branch for the change you’re going to make

git branch [branch-name]
git checkout [branch-name]

4) Make your changes in the code. For every change, you can make a git
commit. For folks used to other paradigms of version control, don’t
worry too much, just have in mind that git trees usually are
independent, and you can commit changes on your local tree. Those
commits can then be generated in the form of patches, that can be
conveniently sent to the maintainers of the upstream project. To commit
you use:

git commit -as

If you have executed the git configuration, you’ll see that there is
already a Signed-off-by: with your name and e-mail, sweet, isn’t it?
Save and there you have your commit.

5) A alternative configuration is helpful for some guys who are using
thunderbird, Zimbra or something like that to filter mail subject
contains “[Autotest]” patches:

git config format.subjectprefix Autotest][PATCH

And then if you run ‘git format-patch’ later, you will get a patch
with “[Autotest][PATCH]” mail’s subject prefix.

	When you want to generate the patches, it’s as easy as doing a:

git format-patch master

It will generate all the differences between your branch and the master
branch. You can also generate a certain number of patches arbitrarily
from any branch. Let’s say you want to pick the last 2 commits you made
and create patch files out of it:

git format-patch -2 --cover-letter

This will generate 2 patches that also happen to be in a unix mailbox
format that can be sent to the mailing list using git send-email ;)

7) Edit your cover letter (patch number 0 generated) with the info you’d
like to include in the patchset.

	Then you can send the patches with git send-email:

git send-email patch1.patch patch2.patch... patchN.patch --to address@foo.org --cc address@bar.org

Note that the aliases you defined on your configuration will allow you
do do stuff like this:

git send-email patch1.patch --to autotest

So that autotest is expanded to the actual mailing list address.

Life cycle of an idea in autotest

If you are wondering how to propose
an idea and work through its completion
(feature making its way to a stable release),
here is a small schema of how ideas transition
to working code in the autotest developer community:

	RFC email to the mailing list

	Allow 2-3 days for feedback. RFC’s often have a lower priority than bugs and usage problems.

	Open github issues according to results of discussion

	Create patchsets that implement solutions to the github issues

	Review, fix comments, resend, until the patches are deemed good by the maintainers

	Patchsets go to the next branch

	Next branch gets tested/scrutinized by automated scripts

	If needed, more bugfix iterations to fix the problems

	next gets merged to master

	master at some point is tagged as a stable autotest release

Although it seems convoluted, no one is stopping you from starting to design and implement your feature, and sending it straight away to github/mailing list (start on step 4). The maintainers will have to analyze and make judgement calls of whether the feature fits the current state of project, reason why it is more advisable to check on the feasibility before starting to spend too much energy implementing things.

You can see what to verify before sending patches in
the submission checklist page,
and if you are new to git, you can read
the git workflow page.

Workflow Details

[image: ../../_images/GitTrackingIssueWorkflow.png]

	Tracking issues do not take the place of high-level mailing-list
discussoins and/or the RFC process.
They are only intended to help coordinate simultanious development on a
specific topic.

	Tracking issues provide an automatically updated centralized
location tracking a collection of related topic issues and pull
requests.

	Anybody with access to open normal github issues and pull requests
is able to link them to one or more tracking issues.

	No discussion should be posted to tracking issues directly. All discussion
should happen within the topic-issues and pull requests.

Topic Issues

	For each proposed feature or enhancement, an issue is opened (Topic Issue)

	Topic issues summarize the proposed test/enhancement and provide a place
for discussion.

	Topic issues are labelled with “future” and topic-specific label(s)
such as “virt-libvirt”, “client”, etc.

	The topic issue is then linked to the tracking issue by mentioning it’s number.
For example: “Linking to tracking issue #9959“

	Code cannot be posted to a topic issue directly. (see Pull Requests and
Mail List Publishing below)

Topic Issue States

[image: ../../_images/GitTrackingIssueStates.png]

	Open and unassigned: Anybody may take ownership and begin working on
this topic, and/or contribute to the discussion.

	Open and assigned: Someone is actively working on code for this topic.
To avoid conflicts, other contributors will need to coordinate with the
assigned person/team.

	closed: Code is finished and has been committed to the project. The
issue may be re-opened under some circumstances. For example, if
a major bug is discovered, and the code is removed from upstream.

	closed stale: Open or Open/Assigned issues with no code posted
within several months.

Pull Requests

	Pull requests are a github-based tool [https://help.github.com/articles/using-pull-requests] where a developer makes a request
that one of their topic-branches be merged with the upstream branch. Pull
Requests may not be opened unless there are code changes available to push.

	All Pull Requests are also github issues. Comments can be posted, including
comments in-line with the code.

	Sending the full patch-set to the Mailing list is not necessary. However
a note to the list containing a link and summary are appreciated.

	Pull Requests are linked to tracking issues in exactly the same way as
topic-issues. Simply mention it’s number. For example:
“Linking to tracking issue #9959“

	If multiple pull requests are required for a single topic, then
an intermediate topic issue should be opened and linked to the tracking-
issue. The pull requests may then all be linked to the intermediate
topic issue.

Pull Request Updates

	Updates made by the author to a topic-branch (then pushed up to github)
will automatically update the Pull Request.

	If other developers want to contribute to a pull request, the process
is identical, except when submitting. In this case, the target branch
should be the original author’s forked branch instead of upstream.

	The original author may then review the changes, and if accepted
they will automatically be merged in with the main pull request.

	Utilizing this method is critical, since it preserves the state
of the issue and keeps the tracking issue from becoming cluttered.

Mail List Publishing

	Utilizing git send-email, patches may be sent to the mailing list.
However, revisions require re-sending the entire patch-set. This
works well for small, simple patches.

	In order to track proposed and under-development mailing list
patch work, please also open a github Topic Issues. The
patches should be referenced in the topic issue by pasting a
http-link from the mailing list archive [https://www.redhat.com/archives/autotest-kernel/]).

	Mailing list patches for anything reasonably complicated
must be split up logically and use of a cover-letter is
highly encouraged (see git setup/usage).

	Discussion regarding mailings list patches should occur
on the mailing list. The github topic issue is simply
used for tracking purposes.

Autotest Test API

This is a review of the available autotest test API.

Control files

A control file is just python code, and therefore should follow the
Autotest python style. The control file ultimately defines the test. In
fact the entire test can be coded in the control file. However if this
leads to a very complicated control file, it is generally recommended
that most of the test code logic be placed in a python module that the
control file runs (via the job object).

A control file should define at the very top a set of variables. These
are:

	AUTHOR

	TIME

	NAME

	TEST_CATEGORY

	TEST_CLASS

	TEST_TYPE

	SYNC_COUNT

	DOC

All except SYNC_COUNT are set to a string. SYNC_COUNT is a number
which has relevance for the scheduling of multi-machine server side
jobs. In addition you can define the variable EXPERIMENTAL (either True
or False). By default it is False, but when set to True, will control
whether the job shows up in the web frontend by default.

Unlike python test code, it is not imported, but rather is executed
directly with the exec() method in the context of certain global and
local symbols. One of the symbols that your control file can assume
exists is job. The job object has a number of methods that you will
most probably use in your control file. The most common are

	job.run_test(test_object, tag, iterations, constraints,
dargs)****

	job.parallel_simple(run_method, machine_list)

	job.record(status_code, subdir, operation, status)

In addition, the control file has access to machines which is a list
of the machines that were passed to the autoserv executable.

Client side tests

A client side test runs entirely on the client (or host machine).
Essentially the entire client subdirectory of Autotest is installed on
the host machine at the beginning of the test. And so the client control
file through the job.run_test() method can execute code contained in a
test class. A test class is code that is generally located in either a
subdirectory of client/tests/ or client/site_tests/. A test class
always is a subclass of autotest_lib.client.bin.test.test. You then
must provide an override for the run_once() method in your class. You
must also define the class variable version. The run_once method
can accept any arguments you desire. These are passed in as the
*dargs*****in the *job.run_test()* method in the control file.

In addition to run_once() you may optionally override the following
methods

	initialize()

	setup()

	warmup()

	run_once()

	postprocess()

The initialize is called first every time the test is run. The setup
method is called once if the test version changed. Then the warmup is
called once. After this run_once is called iterations times. Finally
postprocess is called. The arguments that each method take are
arbitrary. The *dargs*****from *run_test()* are simply passed
through. The exception being *postprocess* which takes no arguments
(other than self of course).

The autotest_lib.client.bin.test.test class also defines various
useful variables. These are

	job: the job object from the control file

	autodir: the autotest directory

	outputdir: the output directory

	resultsdir: the results directory

	profdir: the profiling directory

	debugdir: the debugging directory

	bindir: The bin directory

	srcdir: the src directory

	tmpdir: the tmp directory

In addition the test object has a handful of very useful methods

	write_test_keyval(attr_dict)

	write_perf_keyval(perf_dict)

	write_attr_keyval(attr_dict)

	write_iteration_keyval(attr_dict, perf_dict)

The test keyvals are key/attribute pairs that are associated with the
test. You supply a dictionary, and these will be recorded in a test
level keyvals file as well as in the results (tko) database. The
iteration keyvals can be either performance metrics (a number) or an
attribute (a string). They can be recorded for each iteration, and you
can either record one, the other, or both with the latter three methods
above.

In addition the test class at the end of each iteration will evaluate
any constraints that have been passed into the test via the
job.run_test() command. The constraints variable is a list of strings,
where each string makes an assertion regarding an iteration keyval.
These are evaluated, and failures are recorded. An example constraints
might be: constraints = [‘throughput > 6500’, ‘test_version == 2’]

Generally a typical client side test will make use of code contained in
the standard python libraries, as well as the various utilities located
in autotest_lib.client.bin.utils.

Server side tests

In a typical server side test, the autotest client is not installed on
the host machines. Rather the server keeps host objects that represent
an ssh connection to the host machine, and through which the server can
execute code on the clients. A host object is generally created in the
following way

host = hosts.create_host(machine)

The hosts module is one of those symbols that you can safely assume is
present in your server control file. The machine is a machine name, and
is generally one of the list machines which is also assumed to be
accessible from your control file.

A typical server control file might look like

def run(machine):
 host = hosts.create_host(machine)
 ...

job.parallel_simple(run, machines)

In the above code, the job.parallel_simple() takes the list of
machines and a method, and executes that method for each member of
machines. The first line of the run method creates a host object
that the server can use to execute commands (via ssh) on the client. A
host object has various member variables:

	hostname

	autodir

	ip

	user

	port

	password

	env

	serverdir

Running code on a client can be done via the host object. Typical
methods of a host object are:

	run(cmd)

	run_output(cmd, *args, **dargs)******

	reboot()

	sysrq_reboot()

	get_file(src, dest, delete_dest=False)

	send_file(src, dest, delete_dest=False)

	get_tmp_dir()

	is_up()

	is_shutting_down()

	wait_up(timeout=None)

	wait_down(timeout=None)

	ssh_ping(timeout=60)

A large number of other methods are available and are scattered
throughout the code in server/hosts/. The host object that is created by
the hosts.create_host() method is a mix-in of various host behaviours
that are defined in the server/hosts directory. However the most common
are defined above.

In addition to methods on host, we can run client code via our server
control file using an Autotest object. In order to use the autotest
module you must import if from autotest_lib.server. A typical usage
is

from autotest_lib.server import autotest

control_file = """job.run_test('sleeptest')"""

def run(machine):
 host = hosts.create_host(machine)
 at = autotest.Autotest(host)
 at.run(control_file, machine)

job.parallel_simple(run, machines)

The autotest object will (as part of its instantiation) install the
autotest client on the host. Then we can use the run method to run
code on the client. The first argument is a string. We could have just
as easily written

at.run(open("some control file").read(), machine))

as well.

Multi-machine server side tests

The power of server side tests, is their ability to run different code
on multiple machines simultaneously, and to control their interactions.
The easiest way to describe a multi-machine test is to look at a real
example of one. The following control file is located in
server/tests/netperf2/control.srv

AUTHOR = "mbligh@google.com (Martin Bligh) and bboe@google.com (Bryce Boe)"
TIME = "SHORT"
NAME = "Netperf Multi-machine"
TEST_CATEGORY = "Stress"
TEST_CLASS = 'Hardware'
TEST_TYPE = "Server"
SYNC_COUNT = 2
DOC = """
...
"""

from autotest_lib.server import utils, autotest

def run(pair):
 server = hosts.create_host(pair[0])
 client = hosts.create_host(pair[1])

 server_at = autotest.Autotest(server)
 client_at = autotest.Autotest(client)

 template = ''.join(["job.run_test('netperf2', server_ip='%s', client_ip=",
 "'%s', role='%s', test='TCP_STREAM', test_time=10,",
 "stream_list=[1,10])"])

 server_control_file = template % (server.ip, client.ip, 'server')
 client_control_file = template % (server.ip, client.ip, 'client')

 server_command = subcommand(server_at.run,
 [server_control_file, server.hostname])
 client_command = subcommand(client_at.run,
 [client_control_file, client.hostname])

 parallel([server_command, client_command])

grab the pairs (and failures)
(pairs, failures) = utils.form_ntuples_from_machines(machines, 2)

for failure in failures:
 job.record("FAIL", failure[0], "netperf2", failure[1])

now run through each pair and run
job.parallel_simple(run, pairs, log=False)

The top of the file contains the usual control variables. The most
important one is SYNC_COUNT. This test is a 2 machine test. The first
code that runs, is the line

(pairs, failures) = utils.form_ntuples_from_machines(machines, 2)

This code uses a method from autotest_lib.server.utils which given
the full collection of machines, forms a list of pairs of machines,
and a list of ‘failures’. These failures will ,in this case, be at most
a single machine (odd man out). The next line merely uses the job
object to record a failure for each of the failures. After this, we call
job.parallel_simple() passing in the run function and the list of
pairs.

The run function defined above takes a pair (recall the function
referenced in job.parallel_simple() takes a single element from the
list that is passed in. In this case it is a single pair). We then
create a host object for each of the machines in the pair. Then we
create an autotest object for each host. A control file string is then
constructed for each of the machines. In this test one host acts as a
client, while the other acts as a server in a network test between the
two hosts. So in this test server does not refer to the autotest server,
but rather to one of the autotest clients running this two machine test.

The next three lines are new. The subcommand class, and the parallel
method are defined in autotest_lib.server and are assumed to be part
of the control files namespace. The constructor to subcommand requires a
method, and list of args to pass to that method

server_command = subcommand(server_at.run, [server_control_file, server.hostname])

Here the method is the run method of one of the autotest objects
created earlier, and we are passing that method the
server_control_file, and the hostname. We form the two subcommands
(one for the netperf test server and the other for the netperf test
client). We pass these both to the parallel() method as a list. This
method executes both subcommands simultaneously.

The server netperf2 test whose control file is described above, makes
use of the client side netperf2.py test file. This is located in
client/tests/netperf2/netperf2.py. This code is resident on the host
machines by virtue of the creation of the autotest objects. If you take
a look at the run_once method of the netperf2 class, you will see how
it is that we synchronize the running of the client and server sides of
the netperf2 test. The relevant code is

...
server_tag = server_ip + '#netperf-server'
client_tag = client_ip + '#netperf-client'
all = [server_tag, client_tag]
...
if role == 'server':
 ...
 self.job.barrier(server_tag, 'start_%d' % num_streams, 600).rendevous(*all)
 ...
else if role == 'client':
 ...
 self.job.barrier(client_tag, 'start_%d' % num_streams, 600).rendevous(*all)
 ...

The above demonstrates how we can synchronize clients. In the above we
register two tags (one for each of two roles). Recall that one of the
hosts is running as the client, while the other is running as the
server. We then form a list of the two tags. The next code segment is
important. If we are the server, we employ the job object that every
test has a reference to, and use it to construct a barrier object using
the server_tag. This says we are registering at the barrier using the
server_tag as our tag, and additionally we pass in 600 seconds as our
timeout. The second argument is a logging string. We then call the
rendevous method of the barrier object (yes it is mis-spelled in the
code) and pass in *all. This says that we will wait until all the
tags in the all list register. The client side of the code does the
complementary thing. The rendevous method blocks until both the
server_tag and the client_tag register. Using these barriers, we
can sync the client and server.

Submission common problems

These are quick notes to help you fix common problems autotest/virt-test code
submissions usually have. Please read this and keep it in mind when writing
code for these projects:

Gratuitous use of shell script inside a python program

While we understand that sometimes the contributions in question are adaptations
of existing shell scripts, we ask you to avoid needlessly use shell script
constructs that can be easily replaced by standard python API. Common cases:

	Use of rm, when you can use os.remove(), and rm -rf when you can use
shutil.rmtree.

Please don’t

os.system('rm /tmp/foo')

Do

os.remove('/tmp/foo')

Please don’t

os.system('rm -rf /tmp/foo')

Do

shutil.rmtree('/tmp/foo')

	Use of cat when you want to write contents to a file

Please, really, don’t

 cmd = """cat << EOF > %s
Hey, this is a multiline text
to %
EOF""" % (some_file, some_string)
commands.getstatusoutput(cmd)

Do

 content = """
Hey, this is a multiline text
to %s
""" % some_string
 some_file_obj = open(some_file, 'w')
 some_file_obj.write(content)
 some_file_obj.close()

Use of the commands API, or os.system

Autotest already provides utility methods that are preferrable over os.system
or commands.getstatus() and the likes. The APIs are called utils.system, utils.run,
utils.system_output. They raise exceptions in case of a return code !=0, so
keep this in mind (either you pass ignore_status=True or trap an exception
in case you want something different other than letting this exception coalesce
and fail your test).

from autotest.client.shared import error
from autotest.client import utils

Raises exception, use with error.context
error.context('Disabling firewall')
utils.system('iptables -F')

If you just want the output
output = utils.system_output('dmidecode')

Gives a cmdresult object, that has .stdout, .stderr attributes
cmdresult = utils.run('lspci')
if not "MYDEVICE" in cmdresult.stdout():
 raise error.TestError("Special device not found")

Use of backslashes

In general the use of backslashes is really ugly, and it can be avoided pretty
much every time. Please don’t use

long_cmd = "foo & bar | foo & bar | foo & bar | foo & bar | foo & bar \
 foo & bar"

instead, use

long_cmd = ("foo & bar | foo & bar | foo & bar | foo & bar | foo & bar "
 "foo & bar")

So, parentheses can avoid the use of backslashes in long lines and commands.

Use of constructs that appeared in versions of python > 2.4

Autotest projects use strictly python 2.4, so you can’t use constructs that
appeared in newer versions of python, some examples:

try:
 foo()
except BarError as details: # except ExceptionClass as variable was introduced after 2.4
 baz

try:
 foo()
except BarError, details: # correct, 2.4 compliant syntax
 baz()
finally: # This is the problem, try/except/finally blocks were introduced after 2.4
 gnu()

So, when in doubt, consult the python documentation before sending the patch.

Unconditional import of external python libraries

Sometimes, for a tiny feature inside the test suite, people import an external,
lesser known python library, on a very central and proeminent part of the framework.

Please, don’t do it. You are breaking other people’s workflow and that is bad.

The correct way of doing this is conditionally importing the library, setting
a top level variable that indicates whether the feature is active in the system
(that is, the library can be imported), and when calling the specific feature,
check the top level variable to see if the feature could be found. If it couldn’t,
you fail the test, most probably by throwing an autotest.client.shared.error.TestNAError.

So, instead of doing:

import platinumlib
...
platinumlib.destroy_all()

You will do:

PLATINUMLIB_ENABLED = True
try:
 import platinumlib
except ImportError:
 PLATINUMLIB_ENABLED = False
...
if not PLATINUMLIB_ENABLED:
 raise error.TestNAError('Platinum lib is not installed. '
 'You need to install the package '
 'python-platinumlib for this test '
 'to work.')
platinumlib.destroy_all()

Any patch that carelessly sticks external library imports in central libraries of
virt-test for optional features will be downright rejected.

Autotest requirements

Make it simple to use

	Make the system as user-friendly as possible, whilst still allowing
power users (defaults with overrides!)

	Provide web front-ends where possible.

	Capture the “magic” knowledge of how to complex or fiddly operations
within the harness, not in a person.

	Low barrier to entry for use and development

Gather as much information as possible

	Collect stdout and stderr. Break them out per test.

	Collect dmesg, and serial console where available. Fall back to
netconsole where not.

	Gather profiling data from oprofile, vmstat etc.

	On a hang, gather alt+sysrq+t, etc.

	Monitor the machine via ssh and ICMP ping for it going down

Allow the developers to DEBUG the test failures

	Allow them to rerun the exact same test by hand easily.

	Keep the tests as simple as possible.

	Provide tracebacks on a failure

	Provide a flexible control file format that allows developers to do
custom modifications easily.

Support all types of testing

	Allow tests to run in parallel

	Provide reproducible performance benchmarks

	Allow multiple iterations to be done cleanly for performance testing.

	Support filesystem tests (mkfs, mount, umount, fsck, etc)

	Provide test grouping into single units (build, filesystem, etc).

	Support multi-machine testing and provide syncronization barriers

	Support virtualized machines (Containers, KVM, Xen)

An OPEN harness

	Allow us to interact with vendors by sharing tests and problem
scenarios easily

	Allow us to interact with the open source community by sharing tests
and problem scenarios easily

	Encourage others to contribute to development.

	Also cleanly support proprietary tests where necessary, and code
extensions.

Robust operation

	Allow reinstall of machines from scratch

	Support power cycle on failure

Scheduling and automation

	Provide one job queue per machine, or machine group

	Collect results to a central repository

	Automatically watch for new software releases, and kick off any job
based on that.

Provide back-end analysis

	Suck all the results into a simple, well formatted database.

	Give a clear PASS/FAIL indication from the client test

	Allow arbitrary key-value pairs per test iteration

	Provide clear display of which tests passed on which machines.

	Graph performance results over time, indicating errors, etc.

	Compare two releases for statistically significant performance
differences.

Autotest Design Goals

	Open source - share tests and problem reproductions

	Make it simple to write control files, and yet a powerful language

	Make it simple to write tests and profilers - encourage people to
contribute

	Client is standalone, or will plug into any server/scheduler harness
	Some people just have single machine, want simple set up.

	Corporations each have their own scheduling harness, difficult to
change

	Very little interaction is needed, simple API

	Simple handoff from full automated mesh to individual developer

	Maintainable
	Written in one language, that is powerful, and yet easy to
maintain

	Infrastructure that is easily understandable, and allows wide
variety of people to contribute

	Modular - the basic infrastructure is cleanly separated with well
defined APIs.
	Easy writing of new tests, profilers, bootloaders, etc

	New non-core changes (eg new test) doesn’t break other things.

	Lower barrier to entry for new developers.

	Distributed/scalable maintainership - code controlled by different
people.

	Core is small, with few developers
	This isn’t a super-hard problem.

	Most of the intelligence is in sub-modules (eg the tests).

	Error handling.
	Tests that don’t produce reliable results are useless in an
automated world.

	Developers don’t write error checking easily - need
‘encouragement’.

Modules

	Core - ties everything together

	Tests - execute each tests. many, many separate tests modules.

eg kernbench, aim7, dbench, bonnie, etc.

	Profilers - gather information on a test whilst it’s running, or
before/after.

eg readprofile, oprofile, schedstats, gcov, /proc info

	Results Analysis - Compare equivalent sets of test results. Per test
/ profiler.

	Kernel build - build kernels, with different patches, configs, etc.

Will need different variations to cope with mainline, distro
kernels, etc.

	Bootloader handling - Install new kernels, and reboot to them, pass
parameters, etc

eg. Grub, Lilo, yaboot, zlilo, etc

Key differences

Here are some of the key changes from previous systems I have seen /
used / written:

	The job control file is a script. This allows flexibility and power.

	The client is standalone, so we can easily reproduce problems without
the server.

	Code and tests are modular - you can allow loser control over tests
than the core.

	Code is GPL.

Autotest Maintenance Docs

This document was written to increase the Bus Factor [http://en.wikipedia.org/wiki/Bus_factor]
of the autotest project. Jokes aside, distributing tasks makes the project more
maintainable, given that the load is spread across individuals.

So, these are the activities of a project maintainer, according to the current
project conventions:

	Patch review / Update of development branch

	Sync of the development / master branches

	Policy definition and enforcement

Let’s talk about each one of them.

Quick primer to pull request maintenance

We will talk about all that on the following topics, but we have a little video, part of our autotest weekly
hangout, where I speak about maintenance. It might be useful to watch it, then read the rest of the document.

https://www.youtube.com/watch?v=EzB4fYX5i4s

The actual maintenance talk is between 37:00 - 49:40.

Patch reviewing and devel branch update

We strive to keep a model similar to the one described
in this link [http://nvie.com/posts/a-successful-git-branching-model/]
which boils down to:

	Have a master branch, which is always supposed to be stable

	Have a next branch, which is the integration branch

	When the master branch is updated, by definition, this is a stable release

In the case of the autotest project (the framework project) the only exception
is that we define what is a release in terms of desired functionality, so
there might be many syncs next-master before a stable release can be called upon.

On sub projects, such as virt tests, we adopt the model as is, every next-master
sync means a stable release, that we tag with a timestamp in ISO 8601 format. So,
given that this document is the reference document for all projects under the
autotest umbrella, please keep in mind those little differences.

Very well. Autotest currently uses github [http://github.com] as the project
infrastructure provider. In the past, we used our own hosted solutions, which were
useful at one point, but then became too burdensome to maintain them. Github has
a functionality called Pull requests [https://help.github.com/articles/using-pull-requests]
that pretty much presents a patch set in a graphical, rich way, and allows people
that have github accounts to comment on the patches.

If you’re not familiar with the process, please read the docs pointed out above.
Now, the caveat here is that we don’t use the pull request functionality of
automatically merge the code to the branch against the code is being developed
against. This is because we have checker scripts used to verify the code being
submitted for:

	Syntax errors

	Code that breaks existing unittests

	Permission problems (like an executable script without executable permissions)

	Trailing whitespace/inconsistent indentation problems

Like it or not, keeping the code clean with regards to these problems is project
policy, and tends to make our life better in the long term. So here are the
tools that we hope will make your life easier:

Autotest

Pre-Reqs

These tools assume you have a number of dependency packages installed to your
box to run all these effectly, such as pylint, for static checking, Django
libs to run autotest DB unittests, so on and so forth. So you may go to
this link for instructions on how to install them.

Tools

utils/check_patch.py - This tool is supposed to help you to verify whether a
code from a pull request has no obvious, small problems. It’ll:

	Create a new branch from next (our reference devel branch)

	Apply the code in the form of a patch

	Verify if all changed/created files have no syntax problem (run_pylint.py with -q flag)

	Verify if any changed/created files have no indentation/trailing whitespace problems

	Verify if any changed/created files have a unittest, in which case it’ll execute the unittest and report results

If any problems are found, it will return exit code != 0 and ask you to fix the
problems. In this case, you can point out the code submitter of the problems and
ask him/her to fix them. In order to check a given pull request, say:

https://github.com/autotest/autotest/pull/619

You’ll just execute:

utils/check_patch.py -g 619

And that’d be it. This script has also another important function - It is a full
tree checker, useful to check your own code. Just execute:

utils/check_patch.py --full --yes

And it’ll scan through all files and point you all problems found.

utils/unittest_suite.py - Runs all unittests. Ideally the output of it should
be like:

utils/unittest_suite.py --full
Number of test modules found: 81
autotest.client.kernel_versions_unittest: PASS
autotest.tko.utils_unittest: PASS
autotest.mirror.database_unittest: PASS
autotest.scheduler.gc_stats_unittest: PASS
autotest.client.shared.settings_unittest: PASS
autotest.client.shared.control_data_unittest: PASS
autotest.database_legacy.db_utils_unittest: PASS
...
All passed!

If it is not, please check out the errors.

Virt-Test

tools/check_patch.py - Exactly the same as utils/check_patch.py from autotest,
the difference is the path, really.

tools/run_unittests.py - Exactly the same as the autotest version, only the path
is different.

Applying the code that was reviewed and looks ready for inclusion

You’ll:

	Apply the code using the check_patch script. The execution should come clean.

	git checkout next

	git merge github-[pull request number] that was created by the script

	git push

That’s it. Alternatively, you can use GitHub tools to perform branch merging,
such as hitting the green button, or pulling from the branch manually. As long
as you’ve done your due dilligence, it’s all fine.

Policy enforcement

There are a number of common mistakes made by people submitting patches to
autotest and offspring projects, more frequent when the contributions are test
modules. So when you find such mistakes, please politely help them localize their
mistakes and refer them to
this link on test coding style.

Other than that, trying to give the best of your attention on a patch review is
always important.

Non fast forward updates

Sometimes we need to update the development branch in a non fast forward way.
This is fine, considering the dev branch is not supposed to be fast forward,
however, in order to ease the work of your fellow maintainers, some care has
to be taken (we should keep those updates to a minimum). The main use case
for non fast forward update is when there’s a patch that introduced a regression,
and we have to either fix the patch or drop it from next.

In case you have to do it, please make an annoucement on the mailing list about
it, explaining the reasons underlying the move.

Sync of the development branches

The development branch should pass through regular QA in order to capture
regressions in the code that is getting added to the projects. The current tests
comprise:

	Job runs on a sever that is updated every day with the latest contents of the development branch

	Unittests on a recent dev platform (F18, Ubuntu 12.04)

	Static checking on an older system with python 2.4 (such as RHEL5)

So, there are 2 possibilities:

	The development branch passes all tests, then it is considered apt to release. The merge could’ve happen right away.

	The tests fail. The bad commit should be either fixed straight away, or yanked from the branch.

More details about this step should be written at a later point.

Becoming a Maintainer

Besides the ability to commit code directly to the next branch, and being an authority over some aspect of the tree, there is little other difference with working as a public contributor. That is to say, a maintainer has exactly the same expectations as a contributors, but with the addition of a few more responsibilities. With that in mind, whether you are nominated or request maintainer access, here is a guideline for the minimum requirements:

	X Code submissions per month.

	Y Community-code submission reviews per month.

	Z days elapsed since first code submission.

In general becoming a maintainer follows the following workflow:

	Candidate is nominated, or pledges to a current maintainer.

	Data from above is presented to Maintainer council for relevant project aspect (i.e. autotest, virt-test/libvirt, qemu, etc.).

	Maintainer council reviews data and discusses candidate.

	Feedback is provided to candidate on decision and/or areas needing improvement.

If the Maintainer Council approves the request:

	Access is granted.

	Community announcement delivered.

	MAINTAINERS document(s) updated.

	Requirements and expectations (re-)communicated.

Global Configuration

The global configuration is responsible for configuring many different
aspects of the autotest programs. The client, server, scheduler, some
portions of the frontend as well as other stand alone scripts require
this file to get specific information about your setup. Below is a list
of sections and in each section the options available in the
configuration are described.

If you are making a stand alone checkout of the autotest client, it will
warn you that you might want to create a default config file. If you
want to do so, create a global_config.ini file inside the client
directory with the documented keys on this page, it will look something
like this:

[CLIENT]
drop_caches: True
drop_caches_between_iterations: True

For the other autotest programs, it’s necessary that you have
global_config.ini set on a proper location.

CLIENT

This section describes the global config [CLIENT] section.

	Key
	Description

	drop_caches
	If the autotest client will drop the memory cache for the client machine between test executions

	drop_caches_between_iterations
	If the autotest client will drop the memory cache for the client machine between test iterations executions

	output_dir
	Specify an alternate location to store the test results.

COMMON

This section describes the global config [COMMON] section.

	Key
	Description

	autotest_top_path
	The path for the toplevel autotest directory, defaults to /usr/local/autotest, might vary among distributors.

AUTOTEST_WEB

Parameters for configuring the frontend and scheduler database
connections

	Key
	Description

	host
	The host name where the database is located

	database
	The name of the database

	db_type
	The type of database running (mysql, sqlite)

	user
	Username to connect to the database

	password
	Username to connect to the database

	job_timeout_default
	Default timeout (in hours) for new jobs. If the job gets schedule but it doesn’t get to run, it’ll be aborted without it running at all if this timeout is reached.

	job_max_runtime_hrs_default
	Default timeout (in hours) for running jobs. If job gets to run, but it doesn’t finish during this timeout, it’ll be aborted.

	base_url
	URL to your Autotest server’s AFE interface. You only need this option if the URL is something other than http://$hostname/afe/, where $hostname is the “hostname” value from the SERVER section.

	template_debug_mode
	Whether to enable django template debug mode. If this is set to True, all django errors will be wrapped in a nice debug page with detailed environment and stack trace info. Turned off by default.

	sql_debug_mode
	Whether to enable django SQL debug mode. If this is set to True, all queries performed by the Object Relational Mapper subsystem will be printed, which means the scheduler logs will contains all the queries executed. This is too much verbosity for ‘production’ systems, hence turned off by default.

Retry configuration

The db.py API for connecting to the TKO database includes support for
automatically reconnecting and retrying queries when they fail due to
OperationalErrors (assuming this is possible, i.e. when autocommit is in
use).

	Key
	Description

	query_timeout
	Maximum number of seconds to wait before no giving up and no longer retrying

	min_retry_delay
	The minimum number of seconds to wait after an OperationalError before reconnecting and retrying

	max_retry_delay
	The maximum number of seconds to wait after an OperationalError before reconnecting and retrying

Graph configuration

Configuration parameters for the TKO graphing interface

	Key
	Description

	graph_cache_creation_timeout_minutes
	How frequently cached images for embedded graphing queries will be updated

AUTOSERV

	Key
	Description

	client_autodir_paths
	A comma-delimited list of paths where autoserv will attempt to install clients onto test machines

	ssh_engine
	Autotest has 2 implementations of SSH based hosts, the default (raw_ssh), and another one based on the python SSH library paramiko (paramiko). You can change the default ‘raw_ssh’ to ‘paramiko’ if you want to.

	enable_master_ssh
	Enable OpenSSH connection sharing. Only useful if ssh_engine is ‘raw_ssh’

	require_atfork_module
	Fix problems originated from logging + threading inside autotest. Specially useful when ssh_engine is ‘paramiko’

	use_sshagent_with_paramiko
	Set to False to disable ssh-agent usage with paramiko

SERVER

	Key
	Description

	hostname
	The hostname of the server running the Autotest web interface.

INSTALL_SERVER

Code to interact with a provisioning system, to make it install clients.

	Key
	Description

	type
	Type of install server we talk to. Default: cobbler

	xmlrpc_url
	RPC server URL for your install server. Example: http://foo.com/cobbler_api

	xmlrpc_user
	XMLRPC user, in case the server requires authentication

	xmlrpc_password
	XMLRPC password, in case the server requires authentication

SCHEDULER

This section describes the [SCHEDULER] section of the global
configuration.

	Key
	Description

	notify_email
	Email address to receive warning and error messages from the scheduler

	notify_email_from
	Email address from which to send scheduler messages; defaults to the user running the scheduler

	notify_email_statuses
	When a host in a job reaches one of these statuses, send email to the email_list field of that job. If empty, email will only be sent when the whole job completes.

	max_processes_per_drone
	Maximum number of running Autoserv processes at once on a single server

	max_jobs_started_per_cycle
	Maximum number of Autoserv processes started within one scheduler cycle

	max_parse_processes
	Maximum number of parser processes running at once

	tick_pause_sec
	The pause (in seconds) between the end of a tick and the beginning of the next tick

	clean_interval_minutes
	Time (in minutes) between database sweeps to abort timed-out jobs

	synch_job_start_timeout_minutes
	Time (in minutes) after which a synchronous job that has not yet started running will be aborted)

	results_host
	A host to offload results to via rsync/scp Default: localhost

	results_host_installation_directory
	If you installed your results_host in a different location than the standard /usr/local/autotest, this often will be blank

Distributed execution parameters

The following parameters only need to be changed in a Distributed Server Setup.

	drones
	List of hostnames to act as drones (machines that run Autoserv)

	drone_installation_directory
	Directory in which Autotest is installed on drones, from which Autoserv will be run

	results_host
	Hostname to copy results to after job completion

	max_transfer_processes
	Maximum number of rsync/scp transfers to the results repository at once.

The following are optional parameters that can be used in a Distributed Server Setup.

	archive_host
	An additional hostname to check for results files when they cannot be found elsewhere after a user requests logs through the web interface

	$hostname_disabled
	If set to 1, the drone $hostname will be disabled – no new jobs will run, but existed jobs will be seen to completion

	$hostname_max_processes
	Overrides max_processes_per_drone for a particular drone

HOSTS

This section describes the [HOSTS] section of the global configuration.

	Key
	Description

	wait_up_processes
	A comma-delimited list of processes that Host.wait_up expects to find one of before it considers the host “up”

	default_protection
	Default level of protection to put on new hosts. See HostProtections

PACKAGES

This section describes the [PACKAGES] section of the global
configuration.

	Key
	Description

	fetch_location
	http://myserver.blah.com [http://myserver.blah.com/]

	upload_location
	/usr/local/autotest/packages

	serve_packages_from_autoserv
	If set to True, autoserv will act as a last-resort package repository, allowing you to use the packaging system without setting up HTTP repositories. This defaults to True, but in large-scale production setups where you expect to run a large number of simultaneous autoserv processes you may want to disable this as autoserv builds up the package tarballs on-demand and so this is significantly more expensive than serving static packages over HTTP.

Adding site-specific extensions

If you need to extend the Autotest code in a way that isn’t usable by
the main project, then you’ll probably want to do so in a way that
doesn’t unduly complicate merging your local, extended code with the
official project code. In general this means that you want to pull any
site-specific code into separate files, and have the main code call into
the extension in an optional way.

For site-specific tests this is not a problem. Each test should be
self-contained in its own directory and so you should be able to add new
tests without any other changes to Autotest at all. There may
occasionally be a conflict if a new test is added to the project that
conflicts with a private name you’re already using, but this will should
not be overly common and is easily fixed by renaming.

For adding site-specific common libraries, this is also not a big
problem. Add your module to the client/common_lib directory but add the
name of your module to client/common_lib/site_libraries.py instead of
directly to client/common_lib/__init__.py. This will
create a small conflict as your local
client/common_lib/site_libraries.py will differ from the official one,
however since the official one should never really be changing, merging
should never be a problem. However, remember that any code that imports
these site-specific libraries has itself become site-specific.

In any other cases where you have to modify the core Autotest code,
you’ll have to make an effort to separate out your extensions from the
main body of code. Assuming your extension is being done in a file x.py,
the easiest way to extend it is to add a new module site_x.py that
contains your site specific-code, and then add code to x.py that imports
site_x and makes the appropriate calls.

Now, you’ll want to be able to push out these calls to site_x into the
official code so that you don’t have to constantly merge around them.
That means you’ll still have to be careful about how you use site_x. In
particular:

	the import of site_x has to be done in such a way the code still
works properly when site_x doesn’t exist

	the coupling between x and site_x should be as minimal as possible
(to reduce the chances that other people’s changes to x inadvertently
break site_x)

As an example, look at the use of site_kernel in client/bin/kernel.py.
It supports point 1 by pulling in a function from site_kernel, and if
the import of site_kernel fails, it provides a default implementation
of the function it is trying to import. It supports point 2 by only
inserting a single call into auto_kernel stage, one with very clear and
simple semantics (i.e. perform some optional, site-specific munging of
path names before using them).

Adding site-specific extensions to the CLI

If you need to change the default behavior of some autotest-rpc-client commands, you
can create a cli/site_<topic>.py file to subclass some of the classes
from cli/<topic>.py.

The following example would prevent the creation of platform labels:

import inspect, new, sys

from autotest_lib.cli import topic_common, label

class site_label(label.label):
 pass

class site_label_create(label.label_create):
 """Disable the platform option
 autotest-rpc-client label create <labels>|--blist <file>"""
 def __init__(self):
 super(site_label_create, self).__init__()
 self.parser.remove_option("--platform")

 def parse(self):
 (options, leftover) = super(site_label_create, self).parse()
 self.is_platform = False
 return (options, leftover)

The following boiler plate code should be added at the end to create
all the other site_<topic>_<action> classes that do not modify their
<topic>_<action> super class.

Any classes we don't override in label should be copied automatically
for cls in [getattr(label, n) for n in dir(label) if not n.startswith("_")]:
 if not inspect.isclass(cls):
 continue
 cls_name = cls.__name__
 site_cls_name = 'site_' + cls_name
 if hasattr(sys.modules[__name__], site_cls_name):
 continue
 bases = (site_label, cls)
 members = {'__doc__': cls.__doc__}
 site_cls = new.classobj(site_cls_name, bases, members)
 setattr(sys.modules[__name__], site_cls_name, site_cls)

Autotest status file specification

General Structure

The status file is a variably indented human readable text file format
storing the results or various steps done while running an Autotest job
(ex. reboot start/end, autotest client install, test run/end, etc). The
file is organized by lines and columns, where columns are separated by
TABs. Each line has at least 3 columns:

<command><TAB><subdir><TAB><testname><TAB>....optional content

Note: there must be a trailing <TAB> after the last column on any line

Before the <command> there can be a number of <TAB> characters (also
known as the indentation level).

Formal syntax and semantics specification

The formal definition of the file can be written like this (assuming the
job was not aborted and thus the result file is complete):

<line>
<line>
...
EOF

Where:

<line> := [<status-line>|<info-line>|<group>] # inside a group we can
have status lines, info lines or other groups

<status-line> :=
[<abort-line>|<alert-line>|<error-line>|<fail-line>|<good-line>|<warn-line>]

<abort-line> := “ABORT<TAB><subdir-testname><optional-fields>\n”

<alert-line> := “ALERT<TAB><subdir-testname><optional-fields>\n”

<error-line> := “ERROR<TAB><subdir-testname><optional-fields>\n”

<fail-line> := “FAIL<TAB><subdir-testname><optional-fields>\n”

<good-line> := “GOOD<TAB><subdir-testname><optional-fields>\n”

<warn-line> := “WARN<TAB><subdir-testname><optional-fields>\n”

<info-line> := “INFO<TAB><subdir-testname><optional-fields>\n”

<subdir-testname> := [<none-subdir-testname>|<valid-subdir-testname>]

<none-subdir-testname> := “—-<TAB>—-<TAB>”

<valid-subdir-testname> := “<subdir><TAB><valid-testname><TAB>”

<subdir> := | arbitrary string of characters that does not contain
<TAB>?

<testname> := arbitrary string of characters that does not contain <TAB>
and is not equal to “—-“

<optional-fields> := [“”|”<optional-fields-elements><reason><TAB>”] #
optional fields can either be empty or if not must have a reason at the
end which is not key=value syntax

<reason> := string description of a success/failure reason, does not
contain <TAB>

<optional-fields-elements> := [“”|<optional-field-element>] # we may
have a reason but no other optional field

<optional-field-element> :=
“<optional-field-name>=<optional-field-value><TAB><optional-fields-elements>”
the optional fields to the left of the reason field must be of
key=value syntax

<optional-field-name> := string of characters that do not contain “=” or
<TAB>

<optional-field-value> := string of characters that do not contain <TAB>

<group> := “<start-line><group-contents><end-line>”

<start-line> := “START<TAB><subdir-testname><optional-fields>\n”

<end-line> := “<end-command><TAB><subdir-testname><optional-fields>\n”

<end-command> := [“END ABORT”|”END FAIL”|”END GOOD”]

<group-contents> := [“”|<group-line>] # a group can be empty

<group-line> := “<TAB><line>”

Definitions:

	a job group is a group with testname “SERVER_JOB” or “CLIENT_JOB”

	a test group it’s a group with testname != “—-” that is not a job
group

	a base test group is a test group that may be included in a job group
but is not included in any test group

The formal syntax definition cannot express semantical constraints on
the contents of the file. These are:

	inside a base test group all valid (that is all values except the
“—-” ones) <testname> columns of any line must be equal to the base
test group <testname> (that is, there are no sub-tests, once a base
test group has started everything inside is relevant for that test)

	a job group is present only once in a result file (ie you can’t have
multiple job groups with the same <testname>)

	it’s invalid to have 2 or more test groups with the same <testname>
unless one of them includes all the others

	the next same indentation level END line after a START line shall
have the same <testname> as its corresponding START line or have
“—-” <testname>

	it’s invalid to have a status-line with “—-” subdir and testname
while not being inside a base test group

	it’s invalid for a <status-line> inside a job group but not inside a
base test group to have the same <testname> as an active job group
<testname> unless it’s the inner most job group

Parsing Behaviour

A violation of the syntactical and semantical constraints shall result
in behaviour as if the next lines in the input buffer after the faulty
line are just a sequence of END ABORT lines ending all the active
(started but not ended) groups having subdir/testname corresponding to
the group they end.

<status-line> parsing:

	if the line has a valid subdir and we are inside a base test group
then we update the base test group’s subdir

	if there is no current base test group and if the status line
<testname> does not refer to an active job group it wil behave as if
the input buffer has a test group START/END lines with the status
line testname, subdir, reason, finished time (from the timestamp
optional field)

	if there is no current base test group and the status line <testname>
is equal to an active job group <testname> it will update the status
of that job group if the <status-line> status is worse in which case
if there is a reason field it will be used to update the current
reasons of the referred job group

	if the status line is inside a base test group it will update that
group’s current status if the new status is worse the the old one and
finished time (based on the optional timestamp field); if it has
updated the status and if it has a reason field it will be used to
update the current reasons of the base test group

A <info-line> parsing can be used to update the current kernel version
if there is such an optional field. The current kernel version is a
parser wide state variable that crosses group boundaries. Can’t there be
multiple clients registering INFO for various kernels they boot in the
server server side results file??

When parsing a <end-line> besides ending the current group:

	the status of the END line (determined by the word after the “END ”
part) will be used to update the current group status

	if the previous group is a test group with an invalid (ie “—-”)
subdir update the subdir of the previous group with the current group
subdir

	the finished time of the current group is updated with the timestamp
of the END line

	if the end line is for a reboot operation then current kernel version
is updated with the version from this line

	if this is the end of a base test group it will be recorded in the db
with the state, subdir, testname, reasons, finished_timestamp,
current kernel version

Autotest job results specification

On the client machine, results are stored under
$AUTODIR/results/$JOBNAME/..., where $JOBNAME is default unless
you specify otherwise.

Single machine job output format

The results to each job should conform to:

$AUTODIR/results/default/$JOBNAME/...

	debug/

	build<.***tag***>/
	src/

	build/

	patches/

	config/

	debug/

	summary

	testname<.***tag***>/
	results/

	profiling/

	debug/

	tmp/

	summary

	sysinfo/

	control (the control script)

	summary

Format of status file

There are two copies of the status file, one written by the server as we
go called “status.log”), and another copied back from the client (if it
doesn’t crash) called “status”. Both have the same format specification.
You can read more about the status file format at
StatusFileSpecification.

Multi-machine tests

When collating the results together for a multi-machine test, the
results should be formatted with one subdirectory for each machine in
the test, which should contain the job layout above.

There should be a .machines file in the top level that indicates to the
parser that this a multi-machine job, and lists the correct directories
to parse.

There are two ways a multi-machine job can be run:

	For synchronous jobs, the scheduler kicks off one copy of autoserv,
with multiple machines passed with “-m” option. In this case, it’s
autoserv’s responsibility to create the .machines file. This should
be appended to, one machine at a time, as the main part of the job is
kicked off.

	For asynchronous jobs, the scheduler kicks off one copy of autoserv
per machine. In this case it is the scheduler’s responsibility to
create the .machines fine - we can’t do it from autoserv, as we
didn’t know there were multiple machines.

Scheduler behavior

Results directories and autoserv execution:

	The scheduler always created a job directory, results/<job tag>

	For synchronous jobs, the scheduler runs a single instance of
autoserv with all machines and with the job directory as the results
directory.

	For asynchronous single-machine jobs, the scheduler runs a single
instance of autoserv with that machine and with the job directory as
the results directory.

	For asynchronous multi-machine jobs, the scheduler creates a
results/<job tag>/<hostname> directory for each host and runs one
instance of autoserv for each host with those directories as results
directories.

Metahosts always get queue.log.<id> files created in the job directory
(results/<job tag>). These logs contain a single line for each time a
meta-host is assigned a new host or cleared of its host.

Verify information is handled like so:

	Verify logs from autoserv are always directed to a temporary
directory using the -r option to autoserv.

	Verify stdout is also directed to a host log at
results/hosts/<hostname>.

	On verify success, the contents of the temporary directory are moved
to results/<job tag>/<hostname>, UNLESS it was an asynchronous
single-machine job, in which case the contents are moved to
results/<job tag>.

	On verify failure for a non-metahost, the contents are copied as for
success.

	On verify failure for a metahost, the contents of the temporary
directory are deleted. They are never placed in the job directory.
The only place to find them is in the host log.

The scheduler only creates a .machines file for asynchronous
multi-machine jobs. It creates this file on the fly by appending each
hostname to this file right before running the main autoserv process on
that host.

Documentation

There are two different ways to view the test API documentation.

The more complete (for now) way is to use Pydoc. The less complete
(but new) way is to generate the HTML documentation.

Pydoc

Set your Python path to one directory before your autotest path,
then start the pydoc web server on a port of your choosing.

For example, if your autotest installation is in /usr/local/autotest,
then:

$ export PYTHONPATH=/usr/local
$ pydoc -p 8888

Now use a browser to visit http://localhost:8888.

This will show all of the Python modules on your system. Click
on the autotest entry. Explore from there.

Generate the HTML API documentation

The new approach (still in progress), is to generate the API docs
as html. The HTML docs are nicer looking than the Pydoc webserver
ones, but are not yet as complete.

Here [is an example](http://justinclift.fedorapeople.org/autotest_docs/), generated on 6th Aug 2013.

Instructions to generate your own, known to work on Fedora 19:

$ sudo yum -y install MySQL-python python-django python-sphinx
$ cd /usr/local/autotest
$ python setup.py build_doc
running build_doc
Running Sphinx v1.1.3
loading pickled environment... done
building [html]: targets for 0 source files that are out of date
updating environment: 0 added, 4 changed, 0 removed
Traceback (most recent call last):istro_detection
 File "/usr/lib/python2.7/site-packages/sphinx/ext/autodoc.py", line 321, in import_object
 __import__(self.modname)
ImportError: No module named Probe
reading sources... [100%] frontend/tko_models
/usr/local/autotest/documentation/source/client/distro_detection.rst:91: WARNING: autodoc can't import/find data 'Probe.CHECK_VERSION_REGEX', it reported error: "No module named Probe", please check your spelling and sys.path
looking for now-outdated files... none found
pickling environment... done
checking consistency... done
preparing documents... done
writing output... [100%] index
writing additional files... (4 module code pages) _modules/index
 genindex py-modindex search
copying static files... done
dumping search index... done
dumping object inventory... done
build succeeded, 1 warning.

The generated docs should now be in /usr/local/autotest/build/sphinx/html/.

Autotest Unittest suite

The unittest suite module is the main entry point used to run all the
autotest unit tests. It is important to keep this module running on the
autotest code base to ensure we are not breaking the test coverage we
already got.

Setting up dependencies

This documentation was written for a F18 development box, if you are
running other OS to develop autotest, feel free to add the relevant bits
for your distro.

First, install all dependencies:

sudo installation_support/autotest-install-packages-deps

Now, grab gwt for the dependencies (gwt isn’t packaged right now):

utils/build_externals.py

To run the ‘short’ version of the unittests, just do a:

utils/unittest_suite.py

If you want to run the entire set of unittests, you have to pass the flag –full:

utils/unittest_suite.py --full

Web Frontend Development

When we run a production Autotest server, we run the Django server
through Apache and serve a compiled version of the GWT client. For
development, however, this is far too painful, and we go through a
completely different setup.

Basic setup

Steps below assume that you have basic software setup. Make sure you run
beforehand: installation_support/autotest-install-package-deps and installation_support/autotest-database-turnkey. On a new environment good validation step is to run unit tests before proceeding.

Django server development

You can read more about Django development at their documentation
site [http://www.djangoproject.com/documentation/0.96/], but here’s
the short version.

Without Eclipse

	Running manage.py runserver will start a development server on
http://localhost:8000 [http://localhost:8000/]. This server
automatically reloads files when you change them. You can also view
stdout/stderr from your Django code right in the console. There’s not
a whole lot you can do from your browser with this server by itself,
since the only interface to it is through RPCs.

	manage.py test will run the server test suite (implemented in
frontend/afe/test.py). This includes running pylint on all
files in frontend/afe/ (checking for errors only), running
doctests found in the code, and running the extended doctests in
frontend/afe/doctests. This suite is pretty good at catching
errors, and you should definitely make sure it passes before
submitting patches (and please add to it if you add new features).
Note you may need to install pylint (Ubuntu package
python2.4-pylint).

	On that note, frontend/afe/doctests/rpc_test.txt is also the best
documentation of the RPC interface to the server, so it’s a pretty
good place to start in understanding what’s going on. It’s purposely
written to be readable as documentation, so it doesn’t contain tests
for all corner cases (such as error cases). Such tests should be
written eventually, but they don’t exist now, and if you write some,
please place them in a separate file so as to keep rpc_test.txt
readable.

	You can test the RPC interface out by hand from a Python interpreter:

>>> import common # pylint: disable=W0611
>>> from frontend.afe import rpc_client_lib
>>> proxy = rpc_client_lib.get_proxy('http://localhost:8000/afe/server/rpc/', headers={})
>>> proxy.get_tests(name='sleeptest')
[{u'description': u'Just a sleep test.', u'test_type': u'Client', u'test_class': u'Kernel', u'path': u'client/tests/sleeptest/control', u'id': 1, u'name': u'sleeptest'}]

With Eclipse

	First make sure that you have Eclpise working with PyDev (http://pydev.org/index.html)

	In Eclipse create django project wrapping frontend;

	File>New>Other...>PyDev>PyDev Django Project; click Next

	Project Contents, uncheck Use default and specify directory autotest/frontend, Next
few times to set all properties

	Now you can use Debug As>PyDev: Django that will start your server in debug mode;
You can use standard Eclipse facilities: breakpoints, watches, etc

Note that in both cases when django app is running you can use the admin interface locally
by navigating to http://localhost:8000/afe/server/admin/; This allows to easily add some test
data, examine existing records etc. Note that static files are not served properly so it
is a big ugly but usable.

GWT client development

Again, the full scoop can be found in the GWT Developer
Guide [http://code.google.com/webtoolkit/documentation/], but here’s
the short version:

Without Eclipse

	frontend/client/AfeClient-shell runs a GWT development shell.
This runs the client in a JRE in a modified browser widget. It will
connect to the Django server and operate just like the production
setup, but it’s all running as a normal Java program and it compiles
on-demand, so you’ll never need to compile, you can use your favorite
Java debugger, etc.

	Exception tracebacks are viewable in the console window, and you can
print information to this console using GWT.log().

	Hitting reload in the browser window will pull in and recompile any
changes to the Java code.

With Eclipse

	First download and install GWT and Eclipse plug in and make sure
all is working by running sample GWT app
(https://developers.google.com/web-toolkit/usingeclipse)

	Change the settings in autotest global_config.ini file by turning on
sql_debug_mode: True (section [AUTOTEST_WEB]); This will run
frontend application in debug mode and forward calls to GWT running
in debug mode (in addition to prining sql statements as name implies).

	Start the django app as described above by running manage.py runserver
in frontend directory on default port 8000

	The frontend/client/ directory contains .project and
.classpath files for Eclipse, so you should be able to import the
project using File->Import...->Existing Project into Workspace.

	Double check the project properties:

	Google->Web Application ‘This project has a WAR directory’ should
be unchecked

	Google->Web Toolkit ‘Use Google Web Toolkit’ should be checked and
project connected to appropriate GWT

	Java Build Path->Libraries tab: remove existing (probably bogus)
gwt jar files references and click Add Library-> choose Google Web Toolkit

	Create a run configuration

	Choose ‘Debug Configurations...’ from the menu

	Click New under (Google) Web Application, give it a name, e.g. AfeFrontEnd

	Main tab: Project AfeClient; Main class: com.google.gwt.dev.GWTShell (default)

	GWT tab: URL: autotest.AfeClient/AfeClient.html

	Common tab: optionally set Display in favorites menu

	Start debugging AfeFrontEnd configuration

	Open in a browser url: 127.0.0.1:8000/afe/server/autotest.AfeClient/AfeClient.html?gwt.codesvr=127.0.0.1:9997 Note is is important to use 8000
(django port) and not 8888 GWT port

	At this point you can use normal debugging facilities of Eclipe:
set breakpoints, watches, etc

	Note that frontend/client/AfeClient.launch is not working at the
moment and needs to be updated

See Also

	AutotestServerInstall <../sysadmin/AutotestServerInstall>

Using the Autotest Mock Library for unit testing

To aid with unit testing, we’ve implemented a very useful mocking and
stubbing library under client/shared/test_utils/mock.py. This
library can help you with

	safety stubbing out attributes of modules, classes, or instances, and
restoring them when the test completes

	creating mock functions and objects to substitute for real function
and class instances

	verifying that code under test interacts with external functions and
objects in a certain way, without actually depending on external
objects

Setting up to use the code

from autotest.client.shared.test_utils import mock

You’ll often need a mock_god instance as we’ll see later. This is
best done in your setUp method:

class MyTest(unittest.TestCase):
 def setUp(self):
 self.god = mock.mock_god()

As we’ll also see later, you’ll often want to call
mock_god.unstub_all() in your tearDown method, so I’ll include that
here too:

def tearDown(self):
 self.god.unstub_all()

Stubbing out attributes

Say we want to make os.path.exists() always return True for a test.
First, we can create a mock function:

mock_exists = mock.mock_function('os.path.exists', default_return_val=True)

This returns a function (actually it’s a callable object, but no matter)
that will accept any arguments and always returns True. The function
name passed in (‘os.path.exists’) is used only for error messages and
can be anything you find helpful. Next, we want to stub out
os.path.exists with our new function:

self.god.stub_with(os.path, 'exists', mock_exists)

Now you can call the code under test, and when it calls os.path.exists
it’ll actually be calling your mock function. Note that stub_with
can accept any object to use as a stub – it doesn’t have to be a
mock_function. You could define your own function to do actual work,
but that’s rarely necessary.

Calling self.god.unstub_all() will restore os.path.exists to
it’s original value. You must remember to always do this at the end of
your test. Even if your test never needs it to be unstubbed, your test
may be combined with others in a single test run, and you could mess up
those other tests if you don’t clean up your stubs. The best way to do
this is to always call ``unstub_all()`` in your ``tearDown`` method
if you’re using stubbing.

Stubbing methods on classes

The above approach won’t work for stubbing out methods on classes (not
instances, but the classes themselves). You’ll need to use the trick of
wrapping the mock function in staticmethod():

self.god.stub_with(MyClass, 'my_method', staticmethod(mock_method))

Verifying external interactions of code under test

The above trick is nice, but what if you need to ensure the code under
tests calls your mock functions in a certain way? For that, you can use
mock_god.create_mock_function.

mock_exists = self.god.create_mock_function('os.path.exists')
self.god.stub_with(os.path, 'exists', mock_exists)
note that stub_function() would be more convenient here - see below

How is this different from the above? Mock functions created using
mock_god.create_mock_function follow the expect/verify model. The
basic outline of this is as follows:

	Create your mock functions.

	Set up the expected call sequence on those functions.

	Run the code under test.

	Verify that the mock functions were called as expected.

Let’s look at an example, following from the snippet above:

return True the first time it's called
os.path.expect_call('/my/directory').and_return(True)
return False the next time it's called
os.path.expect_call('/another/directory').and_return(False)
run the code under test
function_under_test()
ensure the code under test made the calls we expected
self.god.check_playback()

This tells the mock god to expect a call to os.path.exists with the
argument '/my/directory' and then with '/another/directory'. If
the code under tests makes these calls in this order, it will get the
specified return values and check_playback() will return without
error. check_playback() will raise an exception if any of the
following occurred:

	a mock function was called with the wrong arguments

	a mock function was called when it wasn’t supposed to be

	a mock function was not called when it was expected to be

Note that order must be consistent across all mock functions (remember
god knows all)

Constructing mock class instances

Frequently our code under test will expect an object to be passed in,
and we’ll want to mock out every method on that object. In that case we
can use mock_god.create_mock_class:

mock_data_source = self.god.create_mock_class(DataSource, 'mock_data_source')
mock_data_source.get_data.expect_call().and_return('some data') # method taking no parameters
mock_data_source.put_data.expect_call(1) # void method
function_under_test(mock_data_source)
self.god.check_playback()

This code creates a mock instance of DataSource. On the mock
instance, all public methods of DataSource will be replaced with
mock functions on which you can use the expect/verify model, just like
functions created with create_mock_function. The second argument to
create_mock_class can be any name; it’s just used in the debug
output.

Isolating a method from other methods on the same instance

You may find yourself needing to test a method of a class instance and
wanting to mock out every other method of that instance.
mock_god.mock_up() provides a convenient way to do this:

construct a real DataSource
data_source = DataSource()
replace every method with a mock function
self.god.mock_up(data_source, "data_source")
data_source.get_data.expect_call().and_return('data')
data_source.put_data.expect_call('more data')
run a real method on the instance
data_source.do_data_manipulation.run_original_function()
do_data_manipulation() calls get_data() and put_data()
self.god.check_playback()

Unlike create_mock_class, mock_up takes an existing instance and
replaces all methods (that don’t start with ‘__’) with mock functions,
while retaining the ability to run the original functions through
run_original_function(). Unlike create_mock_class it will mock up
functions for “protected” (starting with ‘_’) methods.

Verifying class creation within code under test

What if your code under test instantiates and uses a class, and you want
to mock out that class but never have access to it? In this case you can
stub out the class itself using mock_god.create_mock_class_obj. I’ll
use subprocess.Popen as an example:

MockPopen = self.god.create_mock_class_obj(subprocess.Popen)
self.god.stub_with(subprocess, 'Popen', MockPopen)
expect creation of a Popen object
proc = subprocess.Popen.expect_new('some command', shell=True)
expect a call on the created Popen object
proc.poll.expect_call().and_return(0)
code under test creates a subprocess.Popen object and uses it
function_under_test()
self.god.check_playback()

Convenient shortcuts for stubbing

stub_function automatically stubs out a function with a mock
function created using mock_god.create_mock_function, so that you
can use the expect/verify model on it.

self.god.stub_function(os.path, 'exists')
this is equivalent to:
mock_exists = self.god.create_mock_function('exists')
self.god.stub_with(os.path, 'exists', mock_exists)

stub_class_method does the same thing, but wraps the mock function
in staticmethod() and thus is suitable for class methods.

self.god.stub_class_method(MyClass, 'my_method')
this is equivalent to:
mock_method = self.god.create_mock_function('my_method')
self.god.stub_with(MyClass, 'my_method', staticmethod(mock_method))

Stubbing out builtins

Often we’ll want to stub out a builtin function like open(). We’ve
found that the best way to do this is to set an attribute on the module
under test, rather than try to mess with __builtins__ or anything,
as that can mess up other code (such as test infrastructure code).

self.god.stub_function(module_under_test, 'open')
note we're using StringIO to fake a file object
module_under_test.open.expect_call('/some/path', 'r').and_return(StringIO.StringIO('file text'))

module_under_test.function_under_test() # tries to call builtin open
self.god.check_playback()

client Package

autotest_local Module

	
class autotest.client.autotest_local.AutotestLocalApp

	Autotest local app runs tests locally

Point it to a control file and let it rock

	
main()

	

	
parse_cmdline()

	

	
usage()

	

base_sysinfo Module

	
class autotest.client.base_sysinfo.base_sysinfo(job_resultsdir)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	
deserialize(serialized)

	

	
log_after_each_iteration(*args, **dargs)

	

	
log_after_each_test(*args, **dargs)

	

	
log_before_each_iteration(*args, **dargs)

	

	
log_before_each_test(*args, **dargs)

	

	
log_per_reboot_data(*args, **dargs)

	

	
log_test_keyvals(test_sysinfodir)

	Logging hook called by log_after_each_test to collect keyval
entries to be written in the test keyval.

	
serialize()

	

	
class autotest.client.base_sysinfo.command(cmd, logf=None, log_in_keyval=False, compress_log=False)

	Bases: autotest.client.base_sysinfo.loggable

	
run(logdir)

	

	
class autotest.client.base_sysinfo.logfile(path, logf=None, log_in_keyval=False)

	Bases: autotest.client.base_sysinfo.loggable

	
run(logdir)

	

	
class autotest.client.base_sysinfo.loggable(logf, log_in_keyval)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Abstract class for representing all things “loggable” by sysinfo.

	
readline(logdir)

	

base_utils Module

DO NOT import this file directly - import client/bin/utils.py,
which will mix this in

Convenience functions for use by tests or whomever.

Note that this file is mixed in by utils.py - note very carefully the
precedence order defined there

	
autotest.client.base_utils.append_path(oldpath, newpath)

	append newpath to oldpath

	
autotest.client.base_utils.avgtime_print(dir)

	Calculate some benchmarking statistics.
Input is a directory containing a file called ‘time’.
File contains one-per-line results of /usr/bin/time.
Output is average Elapsed, User, and System time in seconds,
and average CPU percentage.

	
autotest.client.base_utils.cat_file_to_cmd(file, command, ignore_status=0, return_output=False)

	equivalent to ‘cat file | command’ but knows to use
zcat or bzcat if appropriate

	
autotest.client.base_utils.check_for_kernel_feature(feature)

	

	
autotest.client.base_utils.check_glibc_ver(ver)

	

	
autotest.client.base_utils.check_kernel_ver(ver)

	

	
autotest.client.base_utils.count_cpus()

	Total number of online CPUs in the local machine

	
autotest.client.base_utils.count_total_cpus()

	Total number of (online+offline) CPUs in the local machine

	
autotest.client.base_utils.cpu_has_flags(flags)

	Check if a list of flags are available on current CPU info

	Parameters:	flags (list) – A list of cpu flags that must exists on the current CPU.

	Returns:	bool True if all the flags were found or False if not

	Return type:	list

	
autotest.client.base_utils.cpu_online_map()

	Check out the available cpu online map

	
autotest.client.base_utils.difflist(list1, list2)

	returns items in list2 that are not in list1

	
autotest.client.base_utils.disk_block_size(path)

	Return the disk block size, in bytes

	
autotest.client.base_utils.dump_object(object)

	Dump an object’s attributes and methods

kind of like dir()

	
autotest.client.base_utils.environ(env_key)

	return the requested environment variable, or ‘’ if unset

	
autotest.client.base_utils.extract_all_time_results(results_string)

	Extract user, system, and elapsed times into a list of tuples

	
autotest.client.base_utils.extract_tarball(tarball)

	Returns the directory extracted by the tarball.

	
autotest.client.base_utils.extract_tarball_to_dir(tarball, dir)

	Extract a tarball to a specified directory name instead of whatever
the top level of a tarball is - useful for versioned directory names, etc

	
autotest.client.base_utils.file_contains_pattern(file, pattern)

	Return true if file contains the specified egrep pattern

	
autotest.client.base_utils.force_copy(src, dest)

	Replace dest with a new copy of src, even if it exists

	
autotest.client.base_utils.force_link(src, dest)

	Link src to dest, overwriting it if it exists

	
autotest.client.base_utils.freespace(path)

	Return the disk free space, in bytes

	
autotest.client.base_utils.get_cc()

	

	
autotest.client.base_utils.get_cpu_arch()

	Work out which CPU architecture we’re running on

	
autotest.client.base_utils.get_cpu_family()

	

	
autotest.client.base_utils.get_cpu_info()

	Reads /proc/cpuinfo and returns a list of file lines

	Returns:	list of lines from /proc/cpuinfo file

	Return type:	list

	
autotest.client.base_utils.get_cpu_stat(key)

	Get load per cpu from /proc/stat
:return: list of values of CPU times

	
autotest.client.base_utils.get_cpu_vendor()

	

	
autotest.client.base_utils.get_cpu_vendor_name()

	Get the current cpu vendor name

	Returns:	string ‘intel’ or ‘amd’ or ‘power7’ depending on the current CPU architecture.

	Return type:	string

	
autotest.client.base_utils.get_current_kernel_arch()

	Get the machine architecture

	
autotest.client.base_utils.get_disks()

	

	
autotest.client.base_utils.get_file_arch(filename)

	

	
autotest.client.base_utils.get_hwclock_seconds(utc=True)

	Return the hardware clock in seconds as a floating point value.
Use Coordinated Universal Time if utc is True, local time otherwise.
Raise a ValueError if unable to read the hardware clock.

	
autotest.client.base_utils.get_loaded_modules()

	

	
autotest.client.base_utils.get_modules_dir()

	Return the modules dir for the running kernel version

	
autotest.client.base_utils.get_os_vendor()

	Try to guess what’s the os vendor.

	
autotest.client.base_utils.get_submodules(module_name)

	Get all submodules of the module.

	Parameters:	module_name (str [https://docs.python.org/2/library/functions.html#str]) – Name of module to search for

	Returns:	List of the submodules

	Return type:	list

	
autotest.client.base_utils.get_systemmap()

	Return the full path to System.map

Ahem. This is crap. Pray harder. Bad Martin.

	
autotest.client.base_utils.get_uptime()

	

	Returns:	return the uptime of system in secs in float in error case return ‘None’

	
autotest.client.base_utils.get_vmlinux()

	Return the full path to vmlinux

Ahem. This is crap. Pray harder. Bad Martin.

	
autotest.client.base_utils.grep(pattern, file)

	This is mainly to fix the return code inversion from grep
Also handles compressed files.

returns 1 if the pattern is present in the file, 0 if not.

	
autotest.client.base_utils.hash_file(filename, size=None, method='md5')

	Calculate the hash of filename.
If size is not None, limit to first size bytes.
Throw exception if something is wrong with filename.
Can be also implemented with bash one-liner (assuming size%1024==0):
dd if=filename bs=1024 count=size/1024 | sha1sum -

	Parameters:	
	filename – Path of the file that will have its hash calculated.

	method – Method used to calculate the hash. Supported methods:
* md5
* sha1

	Returns:	Hash of the file, if something goes wrong, return None.

	
autotest.client.base_utils.human_format(number)

	

	
autotest.client.base_utils.list_grep(list, pattern)

	True if any item in list matches the specified pattern.

	
autotest.client.base_utils.load_module(module_name)

	

	
autotest.client.base_utils.loaded_module_info(module_name)

	Get loaded module details: Size and Submodules.

	Parameters:	module_name (str [https://docs.python.org/2/library/functions.html#str]) – Name of module to search for

	Returns:	Dictionary of module info, name, size, submodules if present

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	
autotest.client.base_utils.locate(pattern, root='/home/docs/checkouts/readthedocs.org/user_builds/autotest/checkouts/stable/documentation/source')

	

	
autotest.client.base_utils.module_is_loaded(module_name)

	Is module loaded

	Parameters:	module_name (str [https://docs.python.org/2/library/functions.html#str]) – Name of module to search for

	Returns:	True is module is loaded

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	
autotest.client.base_utils.parse_lsmod_for_module(l_raw, module_name, escape=True)

	Use a regexp to parse raw lsmod output and get module information
:param l_raw: raw output of lsmod
:type l_raw: str
:param module_name: Name of module to search for
:type module_name: str
:param escape: Escape regexp tokens in module_name, default True
:type escape: bool
:return: Dictionary of module info, name, size, submodules if present
:rtype: dict

	
autotest.client.base_utils.pickle_load(filename)

	

	
autotest.client.base_utils.ping_default_gateway()

	Ping the default gateway.

	
autotest.client.base_utils.prepend_path(newpath, oldpath)

	prepend newpath to oldpath

	
autotest.client.base_utils.print_to_tty(string)

	Output string straight to the tty

	
autotest.client.base_utils.process_is_alive(name_pattern)

	‘pgrep name’ misses all python processes and also long process names.
‘pgrep -f name’ gets all shell commands with name in args.
So look only for command whose initial pathname ends with name.
Name itself is an egrep pattern, so it can use | etc for variations.

	
autotest.client.base_utils.running_config()

	Return path of config file of the currently running kernel

	
autotest.client.base_utils.running_os_full_version()

	

	
autotest.client.base_utils.running_os_ident()

	

	
autotest.client.base_utils.running_os_release()

	

	
autotest.client.base_utils.set_power_state(state)

	Set the system power state to ‘state’.

	
autotest.client.base_utils.set_wake_alarm(alarm_time)

	Set the hardware RTC-based wake alarm to ‘alarm_time’.

	
autotest.client.base_utils.standby()

	Power-on suspend (S1)

	
autotest.client.base_utils.suspend_to_disk()

	Suspend the system to disk (S4)

	
autotest.client.base_utils.suspend_to_ram()

	Suspend the system to RAM (S3)

	
autotest.client.base_utils.sysctl(key, value=None)

	Generic implementation of sysctl, to read and write.

	Parameters:	
	key – A location under /proc/sys

	value – If not None, a value to write into the sysctl.

	Returns:	The single-line sysctl value as a string.

	
autotest.client.base_utils.sysctl_kernel(key, value=None)

	(Very) partial implementation of sysctl, for kernel params

	
autotest.client.base_utils.to_seconds(time_string)

	Converts a string in M+:SS.SS format to S+.SS

	
autotest.client.base_utils.unload_module(module_name)

	Removes a module. Handles dependencies. If even then it’s not possible
to remove one of the modules, it will throw an error.CmdError exception.

	Parameters:	module_name (str [https://docs.python.org/2/library/functions.html#str]) – Name of the module we want to remove.

	
autotest.client.base_utils.unmap_url_cache(cachedir, url, expected_hash, method='md5')

	Downloads a file from a URL to a cache directory. If the file is already
at the expected position and has the expected hash, let’s not download it
again.

	Parameters:	
	cachedir – Directory that might hold a copy of the file we want to
download.

	url – URL for the file we want to download.

	expected_hash – Hash string that we expect the file downloaded to
have.

	method – Method used to calculate the hash string (md5, sha1).

	
autotest.client.base_utils.where_art_thy_filehandles()

	Dump the current list of filehandles

bkr_proxy Module

bkr_proxy - class used to talk to beaker

	
class autotest.client.bkr_proxy.BkrProxy(recipe_id, labc_url=None)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	
get_recipe()

	

	
recipe_abort()

	

	
recipe_stop()

	

	
recipe_upload_file(localfile, remotepath='')

	

	
result_upload_file(task_id, result_id, localfile, remotepath='')

	

	
task_abort(task_id)

	

	
task_result(task_id, result_type, result_path, result_score, result_summary)

	

	
task_start(task_id, kill_time=0)

	

	
task_stop(task_id)

	

	
task_upload_file(task_id, localfile, remotepath='')

	

	
update_watchdog(task_id, kill_time)

	

	
exception autotest.client.bkr_proxy.BkrProxyException(text)

	Bases: exceptions.Exception [https://docs.python.org/2/library/exceptions.html#exceptions.Exception]

	
autotest.client.bkr_proxy.copy_data(data, dest, header=None, use_put=None)

	Copy data to a destination

To aid in debugging, copy a file locally to verify the contents.
Attempts to write the same data that would otherwise be sent
remotely.

	Parameters:	
	data – data string to copy

	dest – destination path

	header – header info item to return

	use_put – dictionary of items for PUT method

	Returns:	nothing or header info if requested

	
autotest.client.bkr_proxy.copy_local(data, dest, use_put=None)

	Copy data locally to a file

To aid in debugging, copy a file locally to verify the contents.
Attempts to write the same data that would otherwise be sent
remotely.

	Parameters:	
	data – encoded data string to copy locally

	dest – local file path

	use_put – chooses to write in binary or text

	Returns:	nothing

	
autotest.client.bkr_proxy.copy_remote(data, dest, use_put=None)

	Copy data to a remote server using http calls POST or PUT

Using http POST and PUT methods, copy data over http. To use
PUT method, provide a dictionary of values to be populated in
the Content-Range and Content-Length headers. Otherwise default
is to use POST method.

Traps on HTTPError 500 and 400

	Parameters:	
	data – encoded data string to copy remotely

	dest – remote server URL

	use_put – dictionary of items if using PUT method

	Returns:	html header info for post processing

	
autotest.client.bkr_proxy.make_path_bkrcache(r)

	Converts a recipe id into an internal path for cache’ing recipe

	Parameters:	r – recipe id

	Returns:	a path to the internal recipe cache file

	
autotest.client.bkr_proxy.make_path_cmdlog(r)

	Converts a recipe id into an internal path for logging purposes

	Parameters:	r – recipe id

	Returns:	a path to the internal command log

	
autotest.client.bkr_proxy.make_path_log(r, t=None, i=None)

	Converts id into a beaker path to log file

Given a recipe id, a task id, and/or result id, translate
them into the proper beaker path to the log file. Depending
on which log file is needed, provide the appropriate params.
Note the dependency, a result id needs a task id and recipe id,
while a task id needs a recipe id.

	Parameters:	
	r – recipe id

	t – task id

	i – result id

	Returns:	a beaker path of the task’s result file

	
autotest.client.bkr_proxy.make_path_recipe(r)

	Converts a recipe id into a beaker path

	Parameters:	r – recipe id

	Returns:	a beaker path to the recipe id

	
autotest.client.bkr_proxy.make_path_result(r, t)

	Converts task id into a beaker path to result file

Given a recipe id and a task id, translate them into
the proper beaker path to the result file.

	Parameters:	
	r – recipe id

	t – task id

	Returns:	a beaker path of the task’s result file

	
autotest.client.bkr_proxy.make_path_status(r, t=None)

	Converts id into a beaker path to status file

Given a recipe id and/or a task id, translate them into
the proper beaker path to the status file. Recipe only, returns
the path to the recipe’s status, whereas including a task returns
the path to the task’s status.

	Parameters:	
	r – recipe id

	t – task id

	Returns:	a beaker path of the recipe’s/task’s status file

	
autotest.client.bkr_proxy.make_path_watchdog(r)

	Converts a recipe id into a beaker path for the watchdog

	Parameters:	r – recipe id

	Returns:	a beaker path of the recipe’s watchdog file

bkr_xml Module

module to parse beaker xml recipe

	
class autotest.client.bkr_xml.BeakerXMLParser

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Handles parsing of beaker job xml

	
handle_recipe(recipe_node)

	

	
handle_recipes(recipe_nodes)

	

	
handle_task(recipe, task_node)

	

	
handle_task_param(task, param_node)

	

	
handle_task_params(task, param_nodes)

	

	
handle_tasks(recipe, task_nodes)

	

	
parse_from_file(file_name)

	

	
parse_xml(xml)

	Returns dict, mapping hostname to recipe

	
class autotest.client.bkr_xml.Recipe

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	
class autotest.client.bkr_xml.Task

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Simple record to store task properties

	
get_param(key, default=None)

	

	
autotest.client.bkr_xml.xml_attr(node, key, default=None)

	

	
autotest.client.bkr_xml.xml_get_nodes(node, tag)

	

client_logging_config Module

	
class autotest.client.client_logging_config.ClientLoggingConfig(use_console=True)

	Bases: autotest.client.shared.logging_config.LoggingConfig

	
add_debug_file_handlers(log_dir, log_name=None)

	

	
configure_logging(results_dir=None, verbose=False)

	

cmdparser Module

Autotest command parser

	copyright:	Don Zickus <dzickus@redhat.com> 2011

	
class autotest.client.cmdparser.CmdParserLoggingConfig(use_console=True)

	Bases: autotest.client.shared.logging_config.LoggingConfig

Used with the sole purpose of providing convenient logging setup
for the KVM test auxiliary programs.

	
configure_logging(results_dir=None, verbose=False)

	

	
class autotest.client.cmdparser.CommandParser

	Bases: object [https://docs.python.org/2/library/functions.html#object]

A client-side command wrapper for the autotest client.

	
COMMAND_LIST = ['help', 'list', 'run', 'fetch', 'bootstrap']

	

	
bootstrap(args, options)

	Bootstrap autotest by fetching the control file first and pass it back

Currently this relies on a harness to retrieve the file

	
fetch(args, options)

	fetch a remote control file or packages

	
classmethod help()

	List the commands and their usage strings.

:param args is not used here.

	
classmethod list_tests()

	List the available tests for users to choose from

	
parse_args(args, options)

	Process a client side command.

	Parameters:	args – Command line args.

	
run(args, options)

	Wrap args with a path and send it back to autotest.

common Module

config Module

The Job Configuration

The job configuration, holding configuration variable supplied to the job.

The config should be viewed as a hierarchical namespace. The elements
of the hierarchy are separated by periods (.) and where multiple words
are required at a level they should be separated by underscores (_).
Please no StudlyCaps.

	For example:

	boot.default_args

	
class autotest.client.config.config(job)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

The BASIC job configuration

	Properties:

	
	job

	The job object for this job

	config

	The job configuration dictionary

	
get(name)

	

	
set(name, value)

	

cpuset Module

	
autotest.client.cpuset.abbrev_list(vals)

	Condense unsigned (0,4,5,6,7,10) to ‘0,4-7,10’.

	
autotest.client.cpuset.all_drive_names()

	

	
autotest.client.cpuset.avail_mbytes(parent='')

	

	
autotest.client.cpuset.available_exclusive_mem_nodes(parent_container)

	

	
autotest.client.cpuset.container_bytes(name)

	

	
autotest.client.cpuset.container_exists(name)

	

	
autotest.client.cpuset.container_mbytes(name)

	

	
autotest.client.cpuset.cpus_path(container_name)

	

	
autotest.client.cpuset.cpuset_attr(container_name, attr)

	

	
autotest.client.cpuset.create_container_directly(name, mbytes, cpus)

	

	
autotest.client.cpuset.create_container_via_memcg(name, parent, bytes, cpus)

	

	
autotest.client.cpuset.create_container_with_mbytes_and_specific_cpus(name, mbytes, cpus=None, root='', io={}, move_in=True, timeout=0)

	Create a cpuset container and move job’s current pid into it
Allocate the list “cpus” of cpus to that container

	Parameters:	
	name – arbitrary string tag

	mbytes – reqested memory for job in megabytes

	(None) (cpus) – list of cpu indices to associate with the cpuset defaults to all cpus avail with given root

	root – the parent cpuset to nest this new set within, ‘’ unnested top-level container

	io – arguments for proportional IO containers

	(True) (move_in) – Move current process into the new container now.

	(must be 0) (timeout) – persist until explicitly deleted.

	
autotest.client.cpuset.create_container_with_specific_mems_cpus(name, mems, cpus)

	

	
autotest.client.cpuset.delete_leftover_test_containers()

	

	
autotest.client.cpuset.discover_container_style()

	

	
autotest.client.cpuset.full_path(container_name)

	

	
autotest.client.cpuset.get_boot_numa()

	

	
autotest.client.cpuset.get_cpus(container_name)

	

	
autotest.client.cpuset.get_mem_nodes(container_name)

	

	
autotest.client.cpuset.get_tasks(container_name)

	

	
autotest.client.cpuset.inner_containers_of(parent)

	

	
autotest.client.cpuset.io_attr(container_name, attr)

	

	
autotest.client.cpuset.mbytes_per_mem_node()

	

	
autotest.client.cpuset.memory_path(container_name)

	

	
autotest.client.cpuset.mems_path(container_name)

	

	
autotest.client.cpuset.move_self_into_container(name)

	

	
autotest.client.cpuset.move_tasks_into_container(name, tasks)

	

	
autotest.client.cpuset.my_available_exclusive_mem_nodes()

	

	
autotest.client.cpuset.my_container_name()

	

	
autotest.client.cpuset.my_lock(lockname)

	

	
autotest.client.cpuset.my_mem_nodes()

	

	
autotest.client.cpuset.my_unlock(lockfile)

	

	
autotest.client.cpuset.need_fake_numa()

	

	
autotest.client.cpuset.need_mem_containers()

	

	
autotest.client.cpuset.node_avail_kbytes(node)

	

	
autotest.client.cpuset.nodes_avail_mbytes(nodes)

	

	
autotest.client.cpuset.rangelist_to_set(rangelist)

	

	
autotest.client.cpuset.release_container(container_name=None)

	

	
autotest.client.cpuset.remove_empty_prio_classes(prios)

	

	
autotest.client.cpuset.set_io_controls(container_name, disks=[], ioprio_classes=[2], io_shares=[95], io_limits=[0])

	

	
autotest.client.cpuset.tasks_path(container_name)

	

	
autotest.client.cpuset.unpath(container_path)

	

fsdev_disks Module

	
autotest.client.fsdev_disks.finish_fsdev(force_cleanup=False)

	This method can be called from the test file to optionally restore
all the drives used by the test to a standard ext2 format. Note that
if use_fsdev_lib() was invoked with ‘reinit_disks’ not set to True,
this method does nothing. Note also that only fsdev “server-side”
dynamic control files should ever set force_cleanup to True.

	
class autotest.client.fsdev_disks.fsdev_disks(job)

	Disk drive handling class used for file system development

	
config_sched_tunables(desc_file)

	

	
get_fsdev_mgr()

	

	
load_sched_tunable_values(val_file)

	

	
set_sched_tunables(disks)

	Given a list of disks in the format returned by get_disk_list() above,
set the I/O scheduler values on all the disks to the values loaded
earlier by load_sched_tunables().

	
set_tunable(disk, name, path, val)

	Given a disk name, a path to a tunable value under _TUNE_PATH and the
new value for the parameter, set the value and verify that the value
has been successfully set.

	
autotest.client.fsdev_disks.get_disk_list(std_mounts_only=True, get_all_disks=False)

	Get a list of dictionaries with information about disks on this system.

	Parameters:	
	std_mounts_only – Whether the function should return only disks that
have a mount point defined (True) or even devices that doesn’t
(False).

	get_all_disks – Whether the function should return only partitioned
disks (False) or return every disk, regardless of being partitioned
or not (True).

	Returns:	List of dictionaries with disk information (see more below).

The ‘disk_list’ array returned by get_disk_list() has an entry for each
disk drive we find on the box. Each of these entries is a map with the
following 3 string values:

‘device’ disk device name (i.e. the part after /dev/)
‘mountpt’ disk mount path
‘tunable’ disk name for setting scheduler tunables (/sys/block/sd??)

The last value is an integer that indicates the current mount status
of the drive:

	‘mounted’ 0 = not currently mounted

	
1 = mounted r/w on the expected path

-1 = mounted readonly or at an unexpected path

When the ‘std_mounts_only’ argument is True we don’t include drives
mounted on ‘unusual’ mount points in the result. If a given device is
partitioned, it will return all partitions that exist on it. If it’s not,
it will return the device itself (ie, if there are /dev/sdb1 and /dev/sdb2,
those will be returned but not /dev/sdb. if there is only a /dev/sdc, that
one will be returned).

	
autotest.client.fsdev_disks.match_fs(disk, dev_path, fs_type, fs_makeopt)

	Matches the user provided fs_type and fs_makeopt with the current disk.

	
autotest.client.fsdev_disks.mkfs_all_disks(job, disk_list, fs_type, fs_makeopt, fs_mnt_opt)

	Prepare all the drives in ‘disk_list’ for testing. For each disk this means
unmounting any mount points that use the disk, running mkfs with ‘fs_type’
as the file system type and ‘fs_makeopt’ as the ‘mkfs’ options, and finally
remounting the freshly formatted drive using the flags in ‘fs_mnt_opt’.

	
autotest.client.fsdev_disks.prepare_disks(job, fs_desc, disk1_only=False, disk_list=None)

	Prepare drive(s) to contain the file system type / options given in the
description line ‘fs_desc’. When ‘disk_list’ is not None, we prepare all
the drives in that list; otherwise we pick the first available data drive
(which is usually hdc3) and prepare just that one drive.

	Args:

	
	fs_desc: A partition.FsOptions instance describing the test -OR- a

	
	legacy string describing the same in ‘/’ separated format:

	‘fstype / mkfs opts / mount opts / short name’.

	disk1_only: Boolean, defaults to False. If True, only test the first

	disk.

	disk_list: A list of disks to prepare. If None is given we default to

	asking get_disk_list().

	Returns:

	(mount path of the first disk, short name of the test, list of disks)
OR (None, ‘’, None) if no fs_desc was given.

	
autotest.client.fsdev_disks.prepare_fsdev(job)

	Called from the test file to get the necessary drive(s) ready; return
a pair of values: the absolute path to the first drive’s mount point
plus the complete disk list (which is useful for tests that need to
use more than one drive).

	
autotest.client.fsdev_disks.restore_disks(job, restore=False, disk_list=None)

	Restore ext2 on the drives in ‘disk_list’ if ‘restore’ is True; when
disk_list is None, we do nothing.

	
autotest.client.fsdev_disks.use_fsdev_lib(fs_desc, disk1_only, reinit_disks)

	Called from the control file to indicate that fsdev is to be used.

	
autotest.client.fsdev_disks.wipe_disks(job, disk_list)

	Wipe all of the drives in ‘disk_list’ using the ‘wipe’ functionality
in the filesystem class.

fsdev_mgr Module

This module defines the BaseFsdevManager Class which provides an
implementation of the ‘fsdev’ helper API; site specific extensions
to any of these methods should inherit this class.

	
class autotest.client.fsdev_mgr.BaseFsdevManager

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	
check_mount_point(part_name, mount_point)

	

	Parameters:	
	part_name – A partition name such as ‘sda3’ or similar.

	mount_point – A mount point such as ‘/usr/local’ or an empty
string if no mount point is known.

	Returns:	The expected mount point for part_name or a false value
(None or ‘’) if the client should not mount this partition.

	
include_partition(part_name)

	

	
map_drive_name(part_name)

	

	
use_partition(part_name)

	

	Parameters:	part_name – A partition name such as ‘sda3’ or similar.

	Returns:	bool, should we use this partition for testing?

	
class autotest.client.fsdev_mgr.FsdevManager

	Bases: autotest.client.fsdev_mgr.BaseFsdevManager

	
autotest.client.fsdev_mgr.SiteFsdevManager

	alias of BaseFsdevManager

fsinfo Module

This module gives the mkfs creation options for an existing filesystem.

tune2fs or xfs_growfs is called according to the filesystem. The results,
filesystem tunables, are parsed and mapped to corresponding mkfs options.

	
autotest.client.fsinfo.compare_features(needed_feature, current_feature)

	Compare two ext* feature lists.

	
autotest.client.fsinfo.convert_conf_opt(default_opt)

	

	
autotest.client.fsinfo.ext_mkfs_options(tune2fs_dict, mkfs_option)

	Map the tune2fs options to mkfs options.

	
autotest.client.fsinfo.ext_tunables(dev)

	Call tune2fs -l and parse the result.

	
autotest.client.fsinfo.match_ext_options(fs_type, dev, needed_options)

	Compare the current ext* filesystem tunables with needed ones.

	
autotest.client.fsinfo.match_mkfs_option(fs_type, dev, needed_options)

	Compare the current filesystem tunables with needed ones.

	
autotest.client.fsinfo.match_xfs_options(dev, needed_options)

	Compare the current ext* filesystem tunables with needed ones.

	
autotest.client.fsinfo.merge_ext_features(conf_feature, user_feature)

	

	
autotest.client.fsinfo.opt_string2dict(opt_string)

	Breaks the mkfs.ext* option string into dictionary.

	
autotest.client.fsinfo.parse_mke2fs_conf(fs_type, conf_file='/etc/mke2fs.conf')

	Parses mke2fs config file for default settings.

	
autotest.client.fsinfo.xfs_mkfs_options(tune2fs_dict, mkfs_option)

	Maps filesystem tunables to their corresponding mkfs options.

	
autotest.client.fsinfo.xfs_tunables(dev)

	Call xfs_grow -n to get filesystem tunables.

harness Module

The harness interface

The interface between the client and the server when hosted.

	
class autotest.client.harness.harness(job)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

The NULL server harness

	Properties:

	
	job

	The job object for this job

	
run_abort()

	A run within this job is aborting. It all went wrong

	
run_complete()

	A run within this job is completing (all done)

	
run_pause()

	A run within this job is completing (expect continue)

	
run_reboot()

	A run within this job is performing a reboot
(expect continue following reboot)

	
run_start()

	A run within this job is starting

	
run_test_complete()

	A test run by this job is complete. Note that if multiple
tests are run in parallel, this will only be called when all
of the parallel runs complete.

	
setup(job)

	
	job

	The job object for this job

	
test_status(status, tag)

	A test within this job is completing

	
test_status_detail(code, subdir, operation, status, tag, optional_fields)

	A test within this job is completing (detail)

	
autotest.client.harness.select(which, job, harness_args)

	

harness_autoserv Module

	
class autotest.client.harness_autoserv.AutoservFetcher(package_manager, job_harness)

	Bases: autotest.client.shared.base_packages.RepositoryFetcher

	
fetch_pkg_file(filename, dest_path)

	

	
class autotest.client.harness_autoserv.harness_autoserv(job, harness_args)

	Bases: autotest.client.harness.harness

The server harness for running from autoserv

	Properties:

	
	job

	The job object for this job

	
fetch_package(pkg_name, dest_path)

	Request a package from the remote autoserv.

	Parameters:	
	pkg_name – The name of the package, as generally used by the
client.shared.packages infrastructure.

	dest_path – The path the package should be copied to.

	
run_start()

	

	
run_test_complete()

	A test run by this job is complete, signal it to autoserv and
wait for it to signal to continue

	
test_status(status, tag)

	A test within this job is completing

harness_beaker Module

The harness interface
The interface between the client and beaker lab controller.

	
exception autotest.client.harness_beaker.HarnessException(text)

	Bases: exceptions.Exception [https://docs.python.org/2/library/exceptions.html#exceptions.Exception]

	
autotest.client.harness_beaker.get_beaker_code(at_code)

	

	
class autotest.client.harness_beaker.harness_beaker(job, harness_args)

	Bases: autotest.client.harness.harness

	
bootstrap(fetchdir)

	How to kickstart autotest when you have no control file?
You download the beaker XML, convert it to a control file
and pass it back to autotest. Much like bootstrapping.. :-)

	
convert_task_to_control(fetchdir, control, task)

	Tasks are really just:
yum install $TEST
cd /mnt/tests/$TEST
make run

Convert that into a test module with a control file

	
find_recipe(recipes_dict)

	

	
get_processed_tests()

	

	
get_recipe_from_LC()

	

	
get_test_name(task)

	

	
init_recipe_from_beaker()

	

	
init_task_params(task)

	

	
kill_watchdog()

	

	
parse_args(args, is_bootstrap)

	

	
parse_quickcmd(args)

	

	
run_abort()

	A run within this job is aborting. It all went wrong

	
run_complete()

	A run within this job is completing (all done)

	
run_pause()

	A run within this job is completing (expect continue)

	
run_reboot()

	A run within this job is performing a reboot
(expect continue following reboot)

	
run_start()

	A run within this job is starting

	
run_test_complete()

	A test run by this job is complete. Note that if multiple
tests are run in parallel, this will only be called when all
of the parallel runs complete.

	
setupInitSymlink()

	

	
start_watchdog(heartbeat)

	

	
tear_down()

	called from complete and abort. clean up and shutdown

	
test_status(status, tag)

	A test within this job is completing

	
test_status_detail(code, subdir, operation, status, tag, optional_fields)

	A test within this job is completing (detail)

	
upload_recipe_files()

	

	
upload_result_files(task_id, resultid, subdir)

	

	
upload_task_files(task_id, subdir)

	

	
watchdog_loop(heartbeat)

	

	
write_processed_tests(subdir, t_id='0')

	

harness_simple Module

The simple harness interface

	
class autotest.client.harness_simple.harness_simple(job, harness_args)

	Bases: autotest.client.harness.harness

The simple server harness

	Properties:

	
	job

	The job object for this job

	
test_status(status, tag)

	A test within this job is completing

harness_standalone Module

The standalone harness interface

The default interface as required for the standalone reboot helper.

	
class autotest.client.harness_standalone.harness_standalone(job, harness_args)

	Bases: autotest.client.harness.harness

The standalone server harness

	Properties:

	
	job

	The job object for this job

job Module

The main job wrapper

This is the core infrastructure.

Copyright Andy Whitcroft, Martin J. Bligh 2006

	
exception autotest.client.job.NotAvailableError

	Bases: autotest.client.shared.error.AutotestError

	
exception autotest.client.job.StepError

	Bases: autotest.client.shared.error.AutotestError

	
class autotest.client.job.base_client_job(control, options, drop_caches=True, extra_copy_cmdline=None)

	Bases: autotest.client.shared.base_job.base_job

The client-side concrete implementation of base_job.

Optional properties provided by this implementation:
- control
- bootloader
- harness

	
add_repository(repo_urls)

	Adds the repository locations to the job so that packages
can be fetched from them when needed. The repository list
needs to be a string list
Ex: job.add_repository([‘http://blah1’,’http://blah2‘])

	
add_sysinfo_command(command, logfile=None, on_every_test=False)

	

	
add_sysinfo_logfile(file, on_every_test=False)

	

	
barrier(*args, **kwds)

	Create a barrier object

	
complete(status)

	Write pending TAP reports, clean up, and exit

	
config_get(name)

	

	
config_set(name, value)

	

	
control_get()

	

	
control_set(control)

	

	
cpu_count()

	

	
disable_external_logging()

	

	
disable_warnings(warning_type)

	

	
enable_external_logging()

	

	
enable_warnings(warning_type)

	

	
end_reboot(subdir, kernel, patches, running_id=None)

	

	
end_reboot_and_verify(expected_when, expected_id, subdir, type='src', patches=[])

	Check the passed kernel identifier against the command line
and the running kernel, abort the job on missmatch.

	
filesystem(*args, **dargs)

	Same as partition

	Deprecated:	Use partition method instead

	
handle_persistent_option(options, option_name)

	Select option from command line or persistent state.
Store selected option to allow standalone client to continue
after reboot with previously selected options.
Priority:
1. explicitly specified via command line
2. stored in state file (if continuing job ‘-c’)
3. default is None

	
harness_select(which, harness_args)

	

	
install_pkg(name, pkg_type, install_dir)

	This method is a simple wrapper around the actual package
installation method in the Packager class. This is used
internally by the profilers, deps and tests code.

	Parameters:	
	name – name of the package (ex: sleeptest, dbench etc.)

	pkg_type – Type of the package (ex: test, dep etc.)

	install_dir – The directory in which the source is actually

untarred into. (ex: client/profilers/<name> for profilers)

	
kernel(base_tree, results_dir='', tmp_dir='', leave=False)

	Summon a kernel object

	
monitor_disk_usage(max_rate)

	Signal that the job should monitor disk space usage on /
and generate a warning if a test uses up disk space at a
rate exceeding ‘max_rate’.

	Parameters:

	
	max_rate - the maximium allowed rate of disk consumption

	during a test, in MB/hour, or 0 to indicate
no limit.

	
next_step(fn, *args, **dargs)

	Create a new step and place it after any steps added
while running the current step but before any steps added in
previous steps

	
next_step_append(fn, *args, **dargs)

	Define the next step and place it at the end

	
next_step_prepend(fn, *args, **dargs)

	Insert a new step, executing first

	
noop(text)

	

	
parallel(*args, **dargs)

	Run tasks in parallel

	
partition(device, loop_size=0, mountpoint=None)

	Work with a machine partition

	param device:	e.g. /dev/sda2, /dev/sdb1 etc...

	param mountpoint:

	 	Specify a directory to mount to. If not specified
autotest tmp directory will be used.

	param loop_size:

	 	Size of loopback device (in MB). Defaults to 0.

	return:	A L{client.partition.partition} object

	
quit()

	

	
reboot(tag=<object object>)

	

	
reboot_setup()

	

	
relative_path(path)

	Return a patch relative to the job results directory

	
require_gcc()

	Test whether gcc is installed on the machine.

	
run_group(function, tag=None, **dargs)

	Run a function nested within a group level.

	Parameters:	
	function – Callable to run.

	tag – An optional tag name for the group. If None (default)

function.__name__ will be used.
:param dargs: Named arguments for the function.

	
run_test(*args, **dargs)

	Summon a test object and run it.

:param url A url that identifies the test to run.
:param tag An optional keyword argument that will be added to the
test and subdir name.
:param subdir_tag An optional keyword argument that will be added
to the subdir name.

	Returns:	True if the test passes, False otherwise.

	
run_test_detail(*args, **dargs)

	Summon a test object and run it, returning test status.

:param url A url that identifies the test to run.
:param tag An optional keyword argument that will be added to the
test and subdir name.
:param subdir_tag An optional keyword argument that will be added
to the subdir name.

	Returns:	Test status

	See:	client/shared/error.py, exit_status

	
setup_dep(deps)

	Set up the dependencies for this test.
deps is a list of libraries required for this test.

	
setup_dirs(results_dir, tmp_dir)

	

	
start_reboot()

	

	
step_engine()

	The multi-run engine used when the control file defines step_init.

Does the next step.

	
xen(base_tree, results_dir='', tmp_dir='', leave=False, kjob=None)

	Summon a xen object

	
class autotest.client.job.disk_usage_monitor(logging_func, device, max_mb_per_hour)

	
	
start()

	

	
stop()

	

	
classmethod watch(*monitor_args, **monitor_dargs)

	Generic decorator to wrap a function call with the
standard create-monitor -> start -> call -> stop idiom.

	
class autotest.client.job.job(control, options, drop_caches=True, extra_copy_cmdline=None)

	Bases: autotest.client.job.base_client_job

	
autotest.client.job.runjob(control, drop_caches, options)

	Run a job using the given control file.

This is the main interface to this module.

	See:	base_job.__init__ for parameter info.

	
autotest.client.job.site_job

	alias of base_client_job

	
class autotest.client.job.status_indenter(job)

	Bases: autotest.client.shared.base_job.status_indenter

Provide a status indenter that is backed by job._record_prefix.

	
decrement()

	

	
increment()

	

	
indent

	

kernel Module

	
class autotest.client.kernel.BootableKernel(job)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	
add_to_bootloader(args='')

	

	
autotest.client.kernel.auto_kernel(job, path, subdir, tmp_dir, build_dir, leave=False)

	Create a kernel object, dynamically selecting the appropriate class to use
based on the path provided.

	
class autotest.client.kernel.kernel(job, base_tree, subdir, tmp_dir, build_dir, leave=False)

	Bases: autotest.client.kernel.BootableKernel

Class for compiling kernels.

Data for the object includes the src files
used to create the kernel, patches applied, config (base + changes),
the build directory itself, and logged output

	Properties:

	
	job

	Backpointer to the job object we’re part of

	autodir

	Path to the top level autotest dir (see global_config.ini,
session COMMON/autotest_top_path)

	src_dir

	<tmp_dir>/src/

	build_dir

	<tmp_dir>/linux/

	config_dir

	<results_dir>/config/

	log_dir

	<results_dir>/debug/

	results_dir

	<results_dir>/results/

	
apply_patches(local_patches)

	apply the list of patches, in order

	
autodir = ''

	

	
boot(args='', ident=True)

	install and boot this kernel, do not care how
just make it happen.

	
build(*args, **dargs)

	

	
build_timed(threads, timefile='/dev/null', make_opts='', output='/dev/null')

	time the bulding of the kernel

	
clean(*args, **dargs)

	

	
config(*args, **dargs)

	

	
extract(*args, **dargs)

	

	
extraversion(tag, append=True)

	

	
get_kernel_build_arch(arch=None)

	Work out the current kernel architecture (as a kernel arch)

	
get_kernel_build_ident()

	

	
get_kernel_build_release()

	

	
get_kernel_build_ver()

	Check Makefile and .config to return kernel version

	
get_kernel_tree(base_tree)

	Extract/link base_tree to self.build_dir

	
get_patches(patches)

	fetch the patches to the local src_dir

	
install(*args, **dargs)

	

	
kernelexpand(kernel)

	

	
mkinitrd(*args, **dargs)

	

	
patch(*args, **dargs)

	

	
pickle_dump(filename)

	dump a pickle of ourself out to the specified filename

we can’t pickle the backreference to job (it contains fd’s),
nor would we want to. Same for logfile (fd’s).

	
set_build_image(image)

	

	
set_build_target(build_target)

	

	
set_cross_cc(target_arch=None, cross_compile=None, build_target='bzImage')

	Set up to cross-compile.
This is broken. We need to work out what the default
compile produces, and if not, THEN set the cross
compiler.

	
autotest.client.kernel.preprocess_path(path)

	

	
class autotest.client.kernel.rpm_kernel(job, rpm_package, subdir)

	Bases: autotest.client.kernel.BootableKernel

Class for installing a binary rpm kernel package

	
boot(args='', ident=True)

	install and boot this kernel

	
build(*args, **dargs)

	Dummy function, binary kernel so nothing to build.

	
install(*args, **dargs)

	

	
kernel_string = '/boot/vmlinuz'

	

	
class autotest.client.kernel.rpm_kernel_suse(job, rpm_package, subdir)

	Bases: autotest.client.kernel.rpm_kernel

Class for installing openSUSE/SLE rpm kernel package

	
add_to_bootloader(args='')

	Set parameters of this kernel in bootloader

	
install()

	

	
kernel_string = '/boot/vmlinux'

	

	
autotest.client.kernel.rpm_kernel_vendor(job, rpm_package, subdir)

	

	
class autotest.client.kernel.srpm_kernel(job, rpm_package, subdir)

	Bases: autotest.client.kernel.kernel

	
apply_patches(local_patches)

	

	
binrpm_pattern = <_sre.SRE_Pattern object>

	

	
boot(args='')

	

	
build(tag='autotest')

	

	
config(*args, **kwargs)

	

	
consume_one_config(config_option)

	

	
finish_init()

	

	
install(tag='autotest')

	

	
prefix = '/root/rpmbuild'

	

	
prep(tag='autotest')

	

	
setup_source()

	

	
update_spec(tag)

	

	
update_spec_line(line, outspec, tag)

	

	
class autotest.client.kernel.srpm_kernel_suse(job, rpm_package, subdir)

	Bases: autotest.client.kernel.srpm_kernel

	
finish_init()

	

	
prefix = '/usr/src/packages'

	

	
setup_source()

	

	
update_spec_line(line, outspec, tag)

	

	
autotest.client.kernel.srpm_kernel_vendor(job, rpm_package, subdir)

	

	
autotest.client.kernel.tee_output_logdir_mark(fn)

	

kernel_config Module

	
autotest.client.kernel_config.apply_overrides(orig_file, changes_file, output_file)

	

	
autotest.client.kernel_config.config_by_name(name, s)

	

	
autotest.client.kernel_config.diff_configs(old, new)

	

	
autotest.client.kernel_config.feature_enabled(feature, config)

	Verify whether a given kernel option is enabled.

	Parameters:	
	feature – Kernel feature, such as “CONFIG_DEFAULT_UIMAGE”.

	config – Config file path, such as /tmp/config.

	
class autotest.client.kernel_config.kernel_config(job, build_dir, config_dir, orig_file, overrides, defconfig=False, name=None, make=None)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Build directory must be ready before init’ing config.

	Stages:

	
	Get original config file

	Apply overrides

	
	Do ‘make oldconfig’ to update it to current source code

	(gets done implicitly during the process)

You may specifiy the defconfig within the tree to build,
or a custom config file you want, or None, to get machine’s
default config file from the repo.

	
config_record(name)

	Copy the current .config file to the config.<name>[.<n>]

	
update_config(old_config, new_config=None)

	

	
autotest.client.kernel_config.modules_needed(config)

	

kernel_versions Module

	
autotest.client.kernel_versions.is_release_candidate(version)

	

	
autotest.client.kernel_versions.is_released_kernel(version)

	

	
autotest.client.kernel_versions.version_choose_config(version, candidates)

	

	
autotest.client.kernel_versions.version_encode(version)

	

	
autotest.client.kernel_versions.version_len(version)

	

	
autotest.client.kernel_versions.version_limit(version, n)

	

kernelexpand Module

Program and API used to expand kernel versions, trying to match
them with the URL of the correspondent package on kernel.org or
a mirror. Example:

$./kernelexpand.py 3.1
http://www.kernel.org/pub/linux/kernel/v3.x/linux-3.1.tar.bz2

	author:	Andy Whitcroft (apw@shadowen.org)

	copyright:	IBM 2008

	license:	GPL v2

	see:	Inspired by kernelexpand by Martin J. Bligh, 2003

	
autotest.client.kernelexpand.decompose_kernel(kernel)

	

	
autotest.client.kernelexpand.decompose_kernel_2x_once(kernel)

	Generate the parameters for the patches (2.X version):

full => full kernel name
base => all but the matches suffix
minor => 2.n.m
major => 2.n
minor-prev => 2.n.m-1

	Parameters:	kernel – String representing a kernel version to be expanded.

	
autotest.client.kernelexpand.decompose_kernel_post_2x_once(kernel)

	Generate the parameters for the patches (post 2.X version):

full => full kernel name
base => all but the matches suffix
minor => o.n.m
major => o.n
minor-prev => o.n.m-1

	Parameters:	kernel – String representing a kernel version to be expanded.

	
autotest.client.kernelexpand.expand_classic(kernel, mirrors)

	

	
autotest.client.kernelexpand.get_mappings_2x()

	

	
autotest.client.kernelexpand.get_mappings_post_2x()

	

	
autotest.client.kernelexpand.mirror_kernel_components(mirrors, components)

	

	
autotest.client.kernelexpand.select_kernel_components(components)

	

	
autotest.client.kernelexpand.url_accessible(url)

	

kvm_control Module

Utilities useful to client control files that test KVM.

	
autotest.client.kvm_control.get_kvm_arch()

	Get the kvm kernel module to be loaded based on the CPU architecture

	Raises:	error.TestError if no vendor name or cpu flags are found

	Returns:	‘kvm_amd’ or ‘kvm_intel’ or ‘kvm_power7’

	Return type:	string

	
autotest.client.kvm_control.load_kvm()

	Loads the appropriate KVM kernel modules depending on the current CPU
architecture

	Returns:	0 on success or 1 on failure

	Return type:	int

	
autotest.client.kvm_control.unload_kvm()

	Unloads the current KVM kernel modules (if loaded)

	Returns:	0 on success or 1 on failure

	Return type:	int

local_host Module

This file contains the implementation of a host object for the local machine.

	
class autotest.client.local_host.LocalHost(*args, **dargs)

	Bases: autotest.client.shared.hosts.base_classes.Host

	
list_files_glob(path_glob)

	Get a list of files on a remote host given a glob pattern path.

	
run(command, timeout=3600, ignore_status=False, stdout_tee=<object object>, stderr_tee=<object object>, stdin=None, args=())

	

	See:	shared.hosts.Host.run()

	
symlink_closure(paths)

	Given a sequence of path strings, return the set of all paths that
can be reached from the initial set by following symlinks.

	Parameters:	paths – sequence of path strings.

	Returns:	a sequence of path strings that are all the unique paths that
can be reached from the given ones after following symlinks.

	
wait_up(timeout=None)

	

lv_utils Module

Utility for taking shapshots from existing logical volumes
or creates such.

	author:	Plamen Dimitrov

	copyright:	Intra2net AG 2012

	license:	GPL v2

	param vg_name:	Name of the volume group.

	param lv_name:	Name of the logical volume.

	param lv_size:	Size of the logical volume as string in the form “#G”
(for example 30G).

	param lv_snapshot_name:

	 	Name of the snapshot with origin the logical
volume.

	param lv_snapshot_size:

	 	Size of the snapshot with origin the logical
volume also as “#G”.

	param ramdisk_vg_size:

	 	Size of the ramdisk virtual group.

	param ramdisk_basedir:

	 	Base directory for the ramdisk sparse file.

	param ramdisk_sparse_filename:

	 	Name of the ramdisk sparse file.

Sample ramdisk params:
- ramdisk_vg_size = “40000”
- ramdisk_basedir = “/tmp”
- ramdisk_sparse_filename = “virtual_hdd”

Sample general params:
- vg_name=’autotest_vg’,
- lv_name=’autotest_lv’,
- lv_size=‘1G’,
- lv_snapshot_name=’autotest_sn’,
- lv_snapshot_size=‘1G’
The ramdisk volume group size is in MB.

	
autotest.client.lv_utils.lv_check(vg_name, lv_name)

	Check whether provided logical volume exists.

	
autotest.client.lv_utils.lv_list(vg_name)

	

	
autotest.client.lv_utils.lv_list_all()

	List available group volumes.

	
autotest.client.lv_utils.thin_lv_create(vg_name, thinpool_name='lvthinpool', thinpool_size='1.5G', thinlv_name='lvthin', thinlv_size='1G')

	Create a thin volume from given volume group.

	Parameters:	
	vg_name – An exist volume group

	thinpool_name – The name of thin pool

	thinpool_size – The size of thin pool to be created

	thinlv_name – The name of thin volume

	thinlv_size – The size of thin volume

	
autotest.client.lv_utils.vg_check(vg_name)

	Check whether provided volume group exists.

	
autotest.client.lv_utils.vg_list()

	List available volume groups.

	
autotest.client.lv_utils.vg_ramdisk_cleanup(ramdisk_filename=None, vg_ramdisk_dir=None, vg_name=None, loop_device=None, use_tmpfs=True)

	Inline cleanup function in case of test error.

optparser Module

Autotest client/local option parser

	
class autotest.client.optparser.AutotestLocalOptionParser

	Bases: optparse.OptionParser [https://docs.python.org/2/library/optparse.html#optparse.OptionParser]

Default autotest option parser

os_dep Module

	
class autotest.client.os_dep.Ldconfig

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	
class DirEntry(path, flag, ino, dev)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	
Ldconfig.LD_SO_CONF = '/etc/ld.so.conf'

	

	
Ldconfig.MAX_RECURSION_DEPTH = 20

	

	
Ldconfig.ldconfig(ld_so_conf_filename='/etc/ld.so.conf', extra_dirs=('/lib', '/usr/lib', '/lib64', '/usr/lib64', '/lib/tls', '/usr/lib/tls', '/lib64/tls', '/usr/lib64/tls'))

	Read and parse /etc/ld.so.conf to generate a list of directories that ldconfig would search.
Pre-seed the search directory list with (‘/lib’, ‘/usr/lib’, ‘/lib64’, ‘/usr/lib64’)

	Parameters:	
	ld_so_conf_filename (str [https://docs.python.org/2/library/functions.html#str]) – path to /etc/ld.so.conf

	extra_dirs (iterable) –

	Returns:	iterator over the directories found

	Return type:	iterable

	
Ldconfig.parse_conf(filename='/etc/ld.so.conf', recursion=0)

	

	
autotest.client.os_dep.command(target, *args, **kwargs)

	Find a program by searching in the environment path and in common binary paths.

check both if it is a file and executable
which always returns the abspath
return ‘’ if failure because ‘’ is well-defined NULL path, so it is
better than None or ValueError

	Parameters:	
	program (str [https://docs.python.org/2/library/functions.html#str]) – command name or path to command

	extra_dirs (iterable) – iterable of extra paths to search

	Returns:	abspath of command if found

	Return type:	str [https://docs.python.org/2/library/functions.html#str]

	Raises:	ValueError – when program not found

	
autotest.client.os_dep.commands(*cmds)

	

	
autotest.client.os_dep.exception_when_false_wrapper(func, exception_class, value_error_message_template)

	Wrap a function to raise an exception when the return value is not True.

	Parameters:	
	func (function) – function to wrap

	exception_class (Exception) – exception class to raise

	value_error_message_template (str [https://docs.python.org/2/library/functions.html#str]) – string to pass to exception

	Returns:	wrapped function

	Return type:	function

	Raises:	exception_class – when func returns not true

	
autotest.client.os_dep.generate_bin_search_paths(program, extra_dirs)

	Generate full paths of potential locations of a given binary file based on
COMMON_BIN_PATHS.

Use the enviroment variable $PATH seed the list of search directories.

	Parameters:	
	program (str [https://docs.python.org/2/library/functions.html#str]) – library filename to join with all search directories

	extra_dirs (str [https://docs.python.org/2/library/functions.html#str]) – extra directories to append to the directory search list

	Returns:	iterator over all generated paths

	Return type:	iter [https://docs.python.org/2/library/functions.html#iter]

	
autotest.client.os_dep.generate_include_search_paths(hdr, extra_dirs)

	Generate full paths of potential locations of a given header file based on
COMMON_HEADER_PATHS.

	Parameters:	
	hdr (str [https://docs.python.org/2/library/functions.html#str]) – header filename to join with all search directories

	extra_dirs (iterable) – extra directories to append to the directory search list

	Returns:	iterator over all generated paths

	Return type:	iterable

	
autotest.client.os_dep.generate_library_search_paths(lib, extra_dirs=('/lib', '/usr/lib', '/lib64', '/usr/lib64', '/lib/tls', '/usr/lib/tls', '/lib64/tls', '/usr/lib64/tls'), ld_so_conf_filename='/etc/ld.so.conf')

	Generate full paths of potential locations of a given library file based on
COMMON_LIB_PATHS.

	Parameters:	
	lib (str [https://docs.python.org/2/library/functions.html#str]) – library filename to join with all search directories

	extra_dirs (iterable) – extra directories to append to the directory search list

	ld_so_conf_filename (str [https://docs.python.org/2/library/functions.html#str]) – location of /etc/ld.so.conf to parse to find all system library locations

	Returns:	iterator over all generated paths

	Return type:	iterable

	
autotest.client.os_dep.header(target, *args, **kwargs)

	Find a header file by searching in the common include search paths, (‘/usr/include’, ‘/usr/local/include’)

Check both if the header is a file and readable.

	Parameters:	
	hdr (str [https://docs.python.org/2/library/functions.html#str]) – header file or path to header file, e.g. stdio.h

	extra_dirs (iterable) – iterable of extra paths to search

	Returns:	abspath of header if found

	Return type:	str [https://docs.python.org/2/library/functions.html#str]

	Raises:	ValueError – when header is not found

	
autotest.client.os_dep.headers(*hdrs)

	

	
autotest.client.os_dep.is_file_and_readable(pth)

	

	Parameters:	pth – path to check

	Returns:	true if the path is a file and R_OK

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	
autotest.client.os_dep.is_file_and_rx(pth)

	

	Parameters:	pth – path to check

	Returns:	true if the path is a file and R_OK & X_OK

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	
autotest.client.os_dep.libraries(*libs)

	

	
autotest.client.os_dep.library(target, *args, **kwargs)

	Find a library file by parsing /etc/ld.so.conf and also searcing in the common library search paths, (‘/lib’, ‘/usr/lib’, ‘/lib64’, ‘/usr/lib64’, ‘/lib/tls’, ‘/usr/lib/tls’, ‘/lib64/tls’, ‘/usr/lib64/tls’)

Check both if the library is a file and readable.

	Parameters:	
	lib (str [https://docs.python.org/2/library/functions.html#str]) – library file or path to library file, e.g. libc.so.6

	extra_dirs (iterable) – iterable of extra paths to search

	Returns:	abspath of library if found

	Return type:	str [https://docs.python.org/2/library/functions.html#str]

	Raises:	ValueError – when library is not found

	
autotest.client.os_dep.make_path_searcher(path_generator, target_predicate, target_normalizer, extra_paths, **kwargs)

	Universal search function generator using lazy evaluation.

Generate a function that will iterate over all the paths from path_generator using
target_predicate to filter matching paths. Each matching path is then noramlized by target_predicate.
Only the first match is returned.

	Parameters:	
	path_generator (iterator) – all paths to test with target_predicate

	target_predicate (function) – boolean function that tests a given path

	target_normalizer (function) – function that transforms a matching path to some noramlized form

	extra_paths (iterator) – extra paths to pass to the path_generator

	Returns:	the path searching function

	Return type:	function

	
autotest.client.os_dep.path_joiner(target, search_paths)

	Create a generator that joins target to each search path

	Parameters:	
	target (str [https://docs.python.org/2/library/functions.html#str]) – filename to join to each search path

	search_paths (iterator) – iterator over all the search paths

	Returns:	iterator over all the joined paths

	Return type:	iterator

	
autotest.client.os_dep.unique_not_false_list(arg_paths)

	

	
autotest.client.os_dep.which(target, extra_dirs=('/usr/libexec', '/usr/local/sbin', '/usr/local/bin', '/usr/sbin', '/usr/bin', '/sbin', '/bin'))

	Find a program by searching in the environment path and in common binary paths.

check both if it is a file and executable
which always returns the abspath
return ‘’ if failure because ‘’ is well-defined NULL path, so it is
better than None or ValueError

	Parameters:	
	program (str [https://docs.python.org/2/library/functions.html#str]) – command name or path to command

	extra_dirs (iterble) – iterable of extra paths to search

	Returns:	abspath of command if found, else ‘’

	Return type:	str [https://docs.python.org/2/library/functions.html#str]

	
autotest.client.os_dep.which_header(target, extra_dirs=frozenset([]))

	Find a header file by searching in the common include search paths, (‘/usr/include’, ‘/usr/local/include’)

Check both if the header is a file and readable.

	Parameters:	
	hdr (str [https://docs.python.org/2/library/functions.html#str]) – header file or path to header file, e.g. stdio.h

	extra_dirs (iterable) – iterable of extra paths to search

	Returns:	abspath of header if found, else ‘’

	Return type:	str [https://docs.python.org/2/library/functions.html#str]

	
autotest.client.os_dep.which_library(target, extra_dirs=('/lib', '/usr/lib', '/lib64', '/usr/lib64', '/lib/tls', '/usr/lib/tls', '/lib64/tls', '/usr/lib64/tls'))

	Find a library file by parsing /etc/ld.so.conf and also searcing in the common library search paths, (‘/lib’, ‘/usr/lib’, ‘/lib64’, ‘/usr/lib64’, ‘/lib/tls’, ‘/usr/lib/tls’, ‘/lib64/tls’, ‘/usr/lib64/tls’)

Check both if the library is a file and readable.

	Parameters:	
	lib (str [https://docs.python.org/2/library/functions.html#str]) – library file or path to library file, e.g. libc.so.6

	extra_dirs (iterable) – iterable of extra paths to search

	Returns:	abspath of library if found, else ‘’

	Return type:	str [https://docs.python.org/2/library/functions.html#str]

parallel Module

Parallel execution management

	
autotest.client.parallel.fork_nuke_subprocess(tmp, pid)

	

	
autotest.client.parallel.fork_start(tmp, l)

	

	
autotest.client.parallel.fork_waitfor(tmp, pid)

	

	
autotest.client.parallel.fork_waitfor_timed(tmp, pid, timeout)

	Waits for pid until it terminates or timeout expires.
If timeout expires, test subprocess is killed.

partition Module

APIs to write tests and control files that handle partition creation, deletion
and formatting.

	copyright:	Google 2006-2008

	author:	Martin Bligh (mbligh@google.com)

	
class autotest.client.partition.FsOptions(fstype, fs_tag, mkfs_flags=None, mount_options=None)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

A class encapsulating a filesystem test’s parameters.

	
fs_tag

	

	
fstype

	

	
mkfs_flags

	

	
mount_options

	

	
autotest.client.partition.filesystems()

	Return a list of all available filesystems

	
autotest.client.partition.filter_partition_list(partitions, devnames)

	Pick and choose which partition to keep.

filter_partition_list accepts a list of partition objects and a list
of strings. If a partition has the device name of the strings it
is returned in a list.

	Parameters:	
	partitions – A list of L{partition} objects

	devnames – A list of devnames of the form ‘/dev/hdc3’ that
specifies which partitions to include in the returned list.

	Returns:	A list of L{partition} objects specified by devnames, in the
order devnames specified

	
autotest.client.partition.get_iosched_path(device_name, component)

	

	
autotest.client.partition.get_mount_info(partition_list)

	Picks up mount point information about the machine mounts. By default, we
try to associate mount points with UUIDs, because in newer distros the
partitions are uniquely identified using them.

	
autotest.client.partition.get_partition_list(job, min_blocks=0, filter_func=None, exclude_swap=True, open_func=<built-in function open>)

	Get a list of partition objects for all disk partitions on the system.

Loopback devices and unnumbered (whole disk) devices are always excluded.

	Parameters:	
	job – The job instance to pass to the partition object
constructor.

	min_blocks – The minimum number of blocks for a partition to
be considered.

	filter_func – A callable that returns True if a partition is
desired. It will be passed one parameter:
The partition name (hdc3, etc.).
Some useful filter functions are already defined in this module.

	exclude_swap – If True any partition actively in use as a swap
device will be excluded.

	__open – Reserved for unit testing.

	Returns:	A list of L{partition} objects.

	
autotest.client.partition.get_unmounted_partition_list(root_part, job=None, min_blocks=0, filter_func=None, exclude_swap=True, open_func=<built-in function open>)

	Return a list of partition objects that are not mounted.

	Parameters:	
	root_part – The root device name (without the ‘/dev/’ prefix, example
‘hda2’) that will be filtered from the partition list.

Reasoning: in Linux /proc/mounts will never directly mention the
root partition as being mounted on / instead it will say that
/dev/root is mounted on /. Thus require this argument to filter out
the root_part from the ones checked to be mounted.

	min_blocks, filter_func, exclude_swap, open_func (job,) – Forwarded
to get_partition_list().

	Returns:	List of L{partition} objects that are not mounted.

	
autotest.client.partition.is_linux_fs_type(device)

	Checks if specified partition is type 83

	Parameters:	device – the device, e.g. /dev/sda3

	Returns:	False if the supplied partition name is not type 83 linux, True
otherwise

	
autotest.client.partition.is_valid_disk(device)

	Checks if a disk is valid

	Parameters:	device – e.g. /dev/sda, /dev/hda

	
autotest.client.partition.is_valid_partition(device)

	Checks if a partition is valid

	Parameters:	device – e.g. /dev/sda1, /dev/hda1

	
autotest.client.partition.list_mount_devices()

	

	
autotest.client.partition.list_mount_points()

	

	
autotest.client.partition.parallel(partitions, method_name, *args, **dargs)

	Run a partition method (with appropriate arguments) in parallel,
across a list of partition objects

	
class autotest.client.partition.partition(job, device, loop_size=0, mountpoint=None)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Class for handling partitions and filesystems

	
fsck(args='-fy', record=True)

	Run filesystem check

	Parameters:	args – arguments to filesystem check tool. Default is “-n”
which works on most tools.

	
get_fsck_exec()

	Return the proper mkfs executable based on self.fstype

	
get_io_scheduler(device_name)

	

	
get_io_scheduler_list(device_name)

	

	
get_mountpoint(open_func=<built-in function open>, filename=None)

	Find the mount point of this partition object.

	Parameters:	
	open_func – the function to use for opening the file containing
the mounted partitions information

	filename – where to look for the mounted partitions information
(default None which means it will search /proc/mounts and/or
/etc/mtab)

	Returns:	a string with the mount point of the partition or None if not
mounted

	
mkfs(fstype=None, args='', record=True)

	Format a partition to filesystem type

	Parameters:	
	fstype – the filesystem type, e.g.. “ext3”, “ext2”

	args – arguments to be passed to mkfs command.

	record – if set, output result of mkfs operation to autotest
output

	
mkfs_exec(fstype)

	Return the proper mkfs executable based on fs

	
mount(mountpoint=None, fstype=None, args='', record=True)

	Mount this partition to a mount point

	Parameters:	
	mountpoint – If you have not provided a mountpoint to partition
object or want to use a different one, you may specify it here.

	fstype – Filesystem type. If not provided partition object value
will be used.

	args – Arguments to be passed to “mount” command.

	record – If True, output result of mount operation to autotest
output.

	
run_test(test, **dargs)

	

	
run_test_on_partition(test, mountpoint_func, **dargs)

	Executes a test fs-style (umount,mkfs,mount,test)

Here we unmarshal the args to set up tags before running the test.
Tests are also run by first umounting, mkfsing and then mounting
before executing the test.

	Parameters:	
	test – name of test to run

	mountpoint_func – function to return mount point string

	
set_fs_options(fs_options)

	Set filesystem options

	param fs_options:

	 	A L{FsOptions} object

	
set_io_scheduler(device_name, name)

	

	
setup_before_test(mountpoint_func)

	Prepare a partition for running a test. Unmounts any
filesystem that’s currently mounted on the partition, makes a
new filesystem (according to this partition’s filesystem
options) and mounts it where directed by mountpoint_func.

	Parameters:	mountpoint_func – A callable that returns a path as a string,
given a partition instance.

	
unmount(ignore_status=False, record=True)

	Umount this partition.

It’s easier said than done to umount a partition.
We need to lock the mtab file to make sure we don’t have any
locking problems if we are umounting in paralllel.

If there turns out to be a problem with the simple umount we
end up calling umount_force to get more aggressive.

	Parameters:	
	ignore_status – should we notice the umount status

	record – if True, output result of umount operation to
autotest output

	
unmount_force()

	Kill all other jobs accessing this partition. Use fuser and ps to find
all mounts on this mountpoint and unmount them.

	Returns:	true for success or false for any errors

	
wipe()

	Delete all files of a given partition filesystem.

	
autotest.client.partition.partname_to_device(part)

	Converts a partition name to its associated device

	
autotest.client.partition.run_test_on_partitions(job, test, partitions, mountpoint_func, tag, fs_opt, do_fsck=True, **dargs)

	Run a test that requires multiple partitions. Filesystems will be
made on the partitions and mounted, then the test will run, then the
filesystems will be unmounted and optionally fsck’d.

	Parameters:	
	job – A job instance to run the test

	test – A string containing the name of the test

	partitions – A list of partition objects, these are passed to the
test as partitions=

	mountpoint_func – A callable that returns a mountpoint given a
partition instance

	tag – A string tag to make this test unique (Required for control
files that make multiple calls to this routine with the same value
of ‘test’.)

	fs_opt – An FsOptions instance that describes what filesystem to make

	do_fsck – include fsck in post-test partition cleanup.

	dargs – Dictionary of arguments to be passed to job.run_test() and
eventually the test

	
autotest.client.partition.unmount_partition(device)

	Unmount a mounted partition

	Parameters:	device – e.g. /dev/sda1, /dev/hda1

	
class autotest.client.partition.virtual_partition(file_img, file_size)

	Handles block device emulation using file images of disks.
It’s important to note that this API can be used only if
we have the following programs present on the client machine:

	sfdisk

	losetup

	kpartx

	
destroy()

	Removes the virtual partition from /dev/mapper, detaches the image file
from the loopback device and removes the image file.

	
autotest.client.partition.wipe_filesystem(job, mountpoint)

	

profiler Module

	
class autotest.client.profiler.profiler(job)

	
	
initialize(*args, **dargs)

	

	
preserve_srcdir = False

	

	
report(test)

	

	
setup(*args, **dargs)

	

	
start(test)

	

	
stop(test)

	

	
supports_reboot = False

	

setup Module

	
autotest.client.setup.get_data_files()

	

	
autotest.client.setup.get_filelist()

	

	
autotest.client.setup.get_package_data()

	

	
autotest.client.setup.get_package_dir()

	

	
autotest.client.setup.get_packages()

	

	
autotest.client.setup.get_scripts()

	

	
autotest.client.setup.run()

	

setup_job Module

	
autotest.client.setup_job.init_test(options, testdir)

	Instantiate a client test object from a given test directory.

	:param options Command line options passed in to instantiate a setup_job

	which associates with this test.

:param testdir The test directory.
:return: A test object or None if failed to instantiate.

	
autotest.client.setup_job.load_all_client_tests(options)

	Load and instantiate all client tests.

This function is inspired from runtest() on client/shared/test.py.

	Parameters:	options – an object passed in from command line OptionParser.
See all options defined on client/autotest.

	Returns:	a tuple containing the list of all instantiated tests and
a list of tests that failed to instantiate.

	
class autotest.client.setup_job.setup_job(options)

	Bases: autotest.client.job.job

setup_job is a job which runs client test setup() method at server side.

This job is used to pre-setup client tests when development toolchain is not
available at client.

	
autotest.client.setup_job.setup_test(client_test)

	Direct invoke test.setup() method.

	Returns:	A boolean to represent success or not.

	
autotest.client.setup_job.setup_tests(options)

	Load and instantiate all client tests.

This function is inspired from runtest() on client/shared/test.py.

	Parameters:	options – an object passed in from command line OptionParser.
See all options defined on client/autotest.

setup_modules Module

Module used to create the autotest namespace for single dir use case.

Autotest programs can be used and developed without requiring it to be
installed system-wide. In order for the code to see the library namespace:

from autotest.client.shared import error
from autotest.server import hosts
...

Without system wide install, we need some hacks, that are performed here.

	author:	John Admanski (jadmanski@google.com)

	
autotest.client.setup_modules.import_module(module, from_where)

	Equivalent to ‘from from_where import module’.

	Parameters:	
	module – Module name.

	from_where – Package from where the module is being imported.

	Returns:	The corresponding module.

	
autotest.client.setup_modules.setup(base_path, root_module_name='autotest')

	Setup a library namespace, with the appropriate top root module name.

Perform all the necessary setup so that all the packages at
‘base_path’ can be imported via “import root_module_name.package”.

	Parameters:	
	base_path – Base path for the module.

	root_module_name – Top level name for the module.

sysinfo Module

test [https://docs.python.org/2/library/test.html#module-test] Module

	
autotest.client.test.runtest(job, url, tag, args, dargs)

	

	
class autotest.client.test.test(job, bindir, outputdir)

	Bases: autotest.client.shared.test.base_test

	
configure_crash_handler()

	
	Configure the crash handler by:

	
	Setting up core size to unlimited

	Putting an appropriate crash handler on /proc/sys/kernel/core_pattern

	Create files that the crash handler will use to figure which tests
are active at a given moment

The crash handler will pick up the core file and write it to
self.debugdir, and perform analysis on it to generate a report. The
program also outputs some results to syslog.

If multiple tests are running, an attempt to verify if we still have
the old PID on the system process table to determine whether it is a
parent of the current test execution. If we can’t determine it, the
core file and the report file will be copied to all test debug dirs.

	
crash_handler_report()

	If core dumps are found on the debugdir after the execution of the
test, let the user know.

test_config Module

Wrapper around ConfigParser to manage testcases configuration.

	author:	rsalveti@linux.vnet.ibm.com (Ricardo Salveti de Araujo)

	
class autotest.client.test_config.config_loader(cfg, tmpdir='/tmp', raise_errors=False)

	Base class of the configuration parser

	
check(section)

	Check if the config file has valid values

	
check_parameter(param_type, parameter)

	Check if a option has a valid value

	
get(section, option, default=None)

	Get the value of a option.

Section of the config file and the option name.
You can pass a default value if the option doesn’t exist.

	Parameters:	
	section – Configuration file section.

	option – Option we’re looking after.

	Default:	In case the option is not available and raise_errors is set
to False, return the default.

	
remove(section, option)

	Remove an option.

	
save()

	Save the configuration file with all modifications

	
set(section, option, value)

	Set an option.

This change is not persistent unless saved with ‘save()’.

utils Module

Convenience functions for use by tests or whomever.

NOTE: this is a mixin library that pulls in functions from several places
Note carefully what the precendece order is

There’s no really good way to do this, as this isn’t a class we can do
inheritance with, just a collection of static methods.

xen Module

	
class autotest.client.xen.xen(job, base_tree, results_dir, tmp_dir, build_dir, leave=False, kjob=None)

	Bases: autotest.client.kernel.kernel

	
add_to_bootloader(tag='autotest', args='')

	add this kernel to bootloader, taking an
optional parameter of space separated parameters
e.g.: kernel.add_to_bootloader(‘mykernel’, ‘ro acpi=off’)

	
build(make_opts='', logfile='', extraversion='autotest')

	build xen

	make_opts

	additional options to make, if any

	
build_timed(*args, **kwds)

	

	
config(config_file, config_list=None)

	

	
fix_up_xen_kernel_makefile(kernel_dir)

	Fix up broken EXTRAVERSION in xen-ified Linux kernel Makefile

	
get_xen_build_ver()

	Check Makefile and .config to return kernel version

	
get_xen_kernel_build_ver()

	Check xen buildconfig for current kernel version

	
install(tag='', prefix='/', extraversion='autotest')

	make install in the kernel tree

	
log(msg)

	

Subpackages

	net Package
	basic_machine Module

	common Module

	net_tc Module

	net_utils Module

	net_utils_mock Module

	profilers Package
	profilers Package

	Subpackages
	blktrace Package
	blktrace Module

	catprofile Package
	catprofile Module

	cmdprofile Package
	cmdprofile Module

	cpistat Package
	cpistat Module

	ftrace Package
	ftrace Module

	inotify Package
	inotify Module

	iostat Package
	iostat Module

	kvm_stat Package
	kvm_stat Module

	lockmeter Package
	lockmeter Module

	lttng Package
	lttng Module

	mpstat Package
	mpstat Module

	oprofile Package
	oprofile Module

	perf Package
	perf Module

	powertop Package
	powertop Module

	readprofile Package
	readprofile Module

	sar Package
	sar Module

	systemtap Package
	systemtap Module

	vmstat Package
	vmstat Module

	shared Package
	autotemp Module

	barrier Module

	base_barrier Module

	base_check_version Module

	base_job Module

	base_packages Module

	base_syncdata Module

	boottool Module

	check_version Module

	common Module

	control_data Module

	distro Module

	distro_def Module

	enum Module

	error Module

	git Module

	host_protections Module

	host_queue_entry_states Module

	iscsi Module

	iso9660 Module

	jsontemplate Module

	kernel_versions Module

	log Module

	logging_config Module

	logging_manager Module

	magic Module

	mail Module

	mock Module

	openvswitch Module

	packages Module

	pidfile Module

	profiler_manager Module

	progressbar Module

	report Module

	service Module

	settings Module

	software_manager Module

	ssh_key Module

	syncdata Module

	test Module

	utils Module

	utils_cgroup Module

	utils_koji Module

	utils_memory Module

	version Module

	Subpackages
	backports Package
	backports Package

	Subpackages
	collections Package
	collections Package

	OrderedDict Module

	defaultdict Module

	namedtuple Module

	simplejson Package
	simplejson Package

	decoder Module

	encoder Module

	ordered_dict Module

	scanner Module

	tool Module

	hosts Package
	hosts Package

	base_classes Module

	common Module

	test_utils Package
	config_change_validation Module

	functools_24 Module

	mock Module

	unittest Module

	tools Package
	JUnit_api Module

	boottool Module

	common Module

	crash_handler Module

	process_metrics Module

	regression Module

	results2junit Module

	scan_results Module

net Package

basic_machine Module

common Module

net_tc Module

Convenience methods for use to manipulate traffic control settings.

see http://linux.die.net/man/8/tc for details about traffic controls in linux.

	Example

	
	try:

	import autotest.common as common # pylint: disable=W0611

	except ImportError:

	
import common # pylint: disable=W0611

from autotest.client.net.net_tc import *
from autotest.client.net.net_utils import *

class mock_netif(object):

	def __init__(self, name):

	self._name = name

	def get_name(self):

	return self._name

netem_qdisc = netem()
netem_qdisc.add_param(‘loss 100%’)

ack_filter = u32filter()
ack_filter.add_rule(‘match ip protocol 6 0xff’)
ack_filter.add_rule(‘match u8 0x10 0x10 at nexthdr+13’)
ack_filter.set_dest_qdisc(netem_qdisc)

root_qdisc = prio()
root_qdisc.get_class(2).set_leaf_qdisc(netem_qdisc)
root_qdisc.add_filter(ack_filter)

lo_if = mock_netif(‘lo’)

root_qdisc.setup(lo_if)

run test here ...
root_qdisc.restore(lo_if)

	
class autotest.client.net.net_tc.classful_qdisc(handle)

	Bases: autotest.client.net.net_tc.qdisc

	
add_class(child_class)

	

	
add_filter(filter)

	

	
classful = True

	

	
restore(netif)

	

	
setup(netif)

	

	
class autotest.client.net.net_tc.classless_qdisc(handle)

	Bases: autotest.client.net.net_tc.qdisc

	
classful = False

	

	
class autotest.client.net.net_tc.netem(handle=300)

	Bases: autotest.client.net.net_tc.classless_qdisc

	
add_param(param)

	

	
name = 'netem'

	

	
setup(netif)

	

	
autotest.client.net.net_tc.new_handle()

	

	
class autotest.client.net.net_tc.pfifo(handle=200)

	Bases: autotest.client.net.net_tc.classless_qdisc

	
name = 'pfifo'

	

	
setup(netif)

	

	
class autotest.client.net.net_tc.prio(handle=100, bands=3)

	Bases: autotest.client.net.net_tc.classful_qdisc

	
get_class(band)

	

	
name = 'prio'

	

	
setup(netif)

	

	
class autotest.client.net.net_tc.qdisc(handle)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	
get_handle()

	

	
get_parent_class()

	

	
id()

	

	
restore(netif)

	

	
set_parent_class(parent_class)

	

	
setup(netif)

	

	
tc_cmd(tc_conf)

	

	
class autotest.client.net.net_tc.tcclass(handle, minor, leaf_qdisc=None)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	
add_child(child_class)

	

	
get_leaf_qdisc()

	

	
get_minor()

	

	
get_parent_class()

	

	
id()

	

	
restore(netif)

	

	
set_leaf_qdisc(leaf_qdisc)

	

	
set_parent_class(parent_class)

	

	
setup(netif)

	

	
class autotest.client.net.net_tc.tcfilter

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	
conf_command = 'cmd'

	

	
conf_device = 'dev'

	

	
conf_flowid = 'flowid'

	

	
conf_name = 'name'

	

	
conf_params = 'params'

	

	
conf_parent = 'parent'

	

	
conf_priority = 'priority'

	

	
conf_protocol = 'protocol'

	

	
conf_qdiscid = 'qdiscid'

	

	
conf_rules = 'cmd'

	

	
conf_type = 'filtertype'

	

	
get_dest_qdisc()

	

	
get_handle()

	

	
get_parent_qdisc()

	

	
get_priority()

	

	
get_protocol()

	

	
restore(netif)

	

	
set_dest_qdisc(dest_qdisc)

	

	
set_handle(handle)

	

	
set_parent_qdisc(parent_qdisc)

	

	
set_priority(priority)

	

	
set_protocol(protocol)

	

	
setup(netif)

	

	
tc_cmd(tc_conf)

	

	
class autotest.client.net.net_tc.u32filter

	Bases: autotest.client.net.net_tc.tcfilter

	
add_rule(rule)

	

	
filtertype = 'u32'

	

	
restore(netif)

	

	
setup(netif)

	

net_utils Module

Convenience functions for use by network tests or whomever.

This library is to release in the public repository.

	
autotest.client.net.net_utils.bond()

	

	
class autotest.client.net.net_utils.bonding

	Bases: object [https://docs.python.org/2/library/functions.html#object]

This class implements bonding interface abstraction.

	
AB_MODE = 1

	

	
AD_MODE = 2

	

	
NO_MODE = 0

	

	
disable()

	

	
enable()

	

	
get_active_interfaces()

	

	
get_mii_status()

	

	
get_mode()

	

	
get_slave_interfaces()

	

	
is_bondable()

	

	
is_enabled()

	

	
wait_for_state_change()

	Wait for bonding state change.

Wait up to 90 seconds to successfully ping the gateway.
This is to know when LACP state change has converged.
(0 seconds is 3x lacp timeout, use by protocol)

	
class autotest.client.net.net_utils.ethernet

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Provide ethernet packet manipulation methods.

	
CHECKSUM_LEN = 4

	

	
ETH_LLDP_DST_MAC = '01:80:C2:00:00:0E'

	

	
ETH_PACKET_MAX_SIZE = 1518

	

	
ETH_PACKET_MIN_SIZE = 64

	

	
ETH_TYPE_8021Q = 33024

	

	
ETH_TYPE_ARP = 2054

	

	
ETH_TYPE_CDP = 8192

	

	
ETH_TYPE_IP = 2048

	

	
ETH_TYPE_IP6 = 34525

	

	
ETH_TYPE_LLDP = 35020

	

	
ETH_TYPE_LOOPBACK = 36864

	

	
FRAME_KEY_DST_MAC = 'dst'

	

	
FRAME_KEY_PAYLOAD = 'payload'

	

	
FRAME_KEY_PROTO = 'proto'

	

	
FRAME_KEY_SRC_MAC = 'src'

	

	
HDR_LEN = 14

	

	
static mac_binary_to_string(hwaddr)

	Converts a MAC address byte string to text string.

Converts a MAC byte string ‘xxxxxxxxxxxx’ to a text string
‘aa:aa:aa:aa:aa:aa’

	Args:

	hwaddr: a byte string containing the MAC address to convert.

	Returns:

	A text string.

	
static mac_string_to_binary(hwaddr)

	Converts a MAC address text string to byte string.

Converts a MAC text string from a text string ‘aa:aa:aa:aa:aa:aa’
to a byte string ‘xxxxxxxxxxxx’

	Args:

	hwaddr: a text string containing the MAC address to convert.

	Returns:

	A byte string.

	
static pack(dst, src, protocol, payload)

	Pack a frame in a byte string.

	Args:

	dst: destination mac in byte string format
src: src mac address in byte string format
protocol: short in network byte order
payload: byte string payload data

	Returns:

	An ethernet frame with header and payload in a byte string.

	
static unpack(raw_frame)

	Unpack a raw ethernet frame.

	Returns:

	
	None on error

	
	{ ‘dst’ : byte string,

	‘src’ : byte string,
‘proto’ : short in host byte order,
‘payload’ : byte string

}

	
autotest.client.net.net_utils.ethernet_packet()

	

	
autotest.client.net.net_utils.netif(name)

	

	
autotest.client.net.net_utils.network()

	

	
class autotest.client.net.net_utils.network_interface(name)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	
DISABLE = False

	

	
ENABLE = True

	

	
add_maddr(maddr)

	

	
del_maddr(maddr)

	

	
disable_loopback()

	

	
disable_promisc()

	

	
down()

	

	
enable_loopback()

	

	
enable_promisc()

	

	
exists()

	

	
flush()

	

	
get_advertised_link_modes()

	

	
get_carrier()

	

	
get_driver()

	

	
get_hwaddr()

	

	
get_ipaddr()

	

	
get_name()

	

	
get_speed()

	

	
get_stats()

	

	
get_stats_diff(orig_stats)

	

	
get_supported_link_modes()

	

	
get_wakeon()

	

	
is_autoneg_advertised()

	

	
is_autoneg_on()

	

	
is_down()

	

	
is_full_duplex()

	

	
is_loopback_enabled()

	

	
is_pause_autoneg_on()

	

	
is_rx_pause_on()

	

	
is_rx_summing_on()

	

	
is_scatter_gather_on()

	

	
is_tso_on()

	

	
is_tx_pause_on()

	

	
is_tx_summing_on()

	

	
parse_ethtool(field, match, option='', next_field='')

	

	
recv(len)

	

	
restore()

	

	
send(buf)

	

	
set_hwaddr(hwaddr)

	

	
set_ipaddr(ipaddr)

	

	
up()

	

	
wait_for_carrier(timeout=60)

	

	
class autotest.client.net.net_utils.network_utils

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	
disable_ip_local_loopback(ignore_status=False)

	

	
enable_ip_local_loopback(ignore_status=False)

	

	
get_ip_local(query_ip, netmask='24')

	Get ip address in local system which can communicate with query_ip.

	Parameters:	query_ip – IP of client which wants to communicate with
autotest machine.

	Returns:	IP address which can communicate with query_ip

	
list()

	

	
process_mpstat(mpstat_out, sample_count, loud=True)

	Parses mpstat output of the following two forms:
02:10:17 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 1012.87
02:10:13 PM 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 1019.00

	
reset(ignore_status=False)

	

	
start(ignore_status=False)

	

	
stop(ignore_status=False)

	

	
class autotest.client.net.net_utils.raw_socket(iface_name)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

This class implements an raw socket abstraction.

	
ETH_P_ALL = 3

	

	
SOCKET_TIMEOUT = 1

	

	
close()

	Close the raw socket

	
open(protocol=None)

	Opens the raw socket to send and receive.

	Args:

	protocol : short in host byte order. None if ALL

	
recv(timeout)

	Synchroneous receive.

Receives one packet from the interface and returns its content
in a string. Wait up to timeout for the packet if timeout is
not 0. This function filters out all the packets that are
less than the minimum ethernet packet size (60+crc).

	Args:

	
	timeout: max time in seconds to wait for the read to complete.

	‘0’, wait for ever until a valid packet is received

	Returns:

	
	packet: None no packet was received

	a binary string containing the received packet.

time_left: amount of time left in timeout

	
recv_from(dst_mac, src_mac, protocol)

	Receive an ethernet frame that matches the dst, src and proto.

Filters all received packet to find a matching one, then unpack
it and present it to the caller as a frame.

Waits up to self._socket_timeout for a matching frame before
returning.

	Args:

	dst_mac: ‘byte string’. None do not use in filter.
src_mac: ‘byte string’. None do not use in filter.
protocol: short in host byte order. None do not use in filter.

	Returns:

	
	ethernet frame: { ‘dst’ : byte string,

	
‘src’ : byte string,
‘proto’ : short in host byte order,
‘payload’ : byte string

}

	
send(packet)

	Send an ethernet packet.

	
send_to(dst_mac, src_mac, protocol, payload)

	Send an ethernet frame.

Send an ethernet frame, formating the header.

	Args:

	dst_mac: ‘byte string’
src_mac: ‘byte string’
protocol: short in host byte order
payload: ‘byte string’

	
set_socket_timeout(timeout)

	Set the timeout use by recv_from.

	Args:

	timeout: time in seconds

	
socket()

	

	
socket_timeout()

	Get the timeout use by recv_from

net_utils_mock Module

Set of Mocks and stubs for network utilities unit tests.

Implement a set of mocks and stubs use to implement unit tests
for the network libraries.

	
class autotest.client.net.net_utils_mock.netif_stub(iface, cls, name, *args, **kwargs)

	Bases: autotest.client.shared.test_utils.mock.mock_class

	
wait_for_carrier(timeout)

	

	
autotest.client.net.net_utils_mock.netutils_netif(iface)

	

	
class autotest.client.net.net_utils_mock.network_interface_mock(iface='some_name', test_init=False)

	Bases: autotest.client.net.net_utils.network_interface

	
get_driver()

	

	
get_ipaddr()

	

	
is_down()

	

	
is_loopback_enabled()

	

	
wait_for_carrier(timeout=1)

	

	
autotest.client.net.net_utils_mock.os_open(*args, **kwarg)

	

	
class autotest.client.net.net_utils_mock.os_stub(symbol, **kwargs)

	Bases: autotest.client.shared.test_utils.mock.mock_function

	
open(*args, **kwargs)

	

	
read(*args, **kwargs)

	

	
readval = ''

	

	
class autotest.client.net.net_utils_mock.socket_stub(iface, cls, name, *args, **kwargs)

	Bases: autotest.client.shared.test_utils.mock.mock_class

Class use to mock sockets.

	
bind(arg)

	

	
close()

	

	
recv(size)

	

	
send(buf)

	

	
settimeout(timeout)

	

	
socket(family, type)

	

profilers Package

profilers Package

	
class autotest.client.profilers.profilers(job)

	Bases: autotest.client.shared.profiler_manager.profiler_manager

	
load_profiler(profiler, args, dargs)

	

Subpackages

	blktrace Package
	blktrace Module

	catprofile Package
	catprofile Module

	cmdprofile Package
	cmdprofile Module

	cpistat Package
	cpistat Module

	ftrace Package
	ftrace Module

	inotify Package
	inotify Module

	iostat Package
	iostat Module

	kvm_stat Package
	kvm_stat Module

	lockmeter Package
	lockmeter Module

	lttng Package
	lttng Module

	mpstat Package
	mpstat Module

	oprofile Package
	oprofile Module

	perf Package
	perf Module

	powertop Package
	powertop Module

	readprofile Package
	readprofile Module

	sar Package
	sar Module

	systemtap Package
	systemtap Module

	vmstat Package
	vmstat Module

blktrace Package

blktrace Module

Autotest profiler for blktrace
blktrace - generate traces of the i/o traffic on block devices

	
class autotest.client.profilers.blktrace.blktrace.blktrace(job)

	Bases: autotest.client.profiler.profiler

	
get_device(test)

	

	
initialize(**dargs)

	

	
report(test)

	

	
setup(tarball='blktrace.tar.bz2', **dargs)

	

	
start(test)

	

	
stop(test)

	

	
version = 2

	

catprofile Package

catprofile Module

Sets up a subprocses to cat a file on a specified interval

Defaults options:
job.profilers.add(‘catprofile’, [‘/proc/meminfo’,’/proc/uptime’],

outfile=monitor, interval=1)

	
class autotest.client.profilers.catprofile.catprofile.catprofile(job)

	Bases: autotest.client.profiler.profiler

	
initialize(filenames=['/proc/meminfo', '/proc/slabinfo'], outfile='monitor', interval=1, **dargs)

	

	
report(test)

	

	
start(test)

	

	
stop(test)

	

	
version = 1

	

cmdprofile Package

cmdprofile Module

Sets up a subprocess to run any generic command in the background every
few seconds (by default the interval is 60 secs)

	
class autotest.client.profilers.cmdprofile.cmdprofile.cmdprofile(job)

	Bases: autotest.client.profiler.profiler

	
initialize(cmds=['ps'], interval=60, outputfile='cmdprofile', outputfiles=None, **dargs)

	

	
start(test)

	

	
stop(test)

	

	
supports_reboot = True

	

	
version = 2

	

cpistat Package

cpistat Module

Uses perf_events to count cycles and instructions

Defaults options:
job.profilers.add(‘cpistat’, interval=1)

	
class autotest.client.profilers.cpistat.cpistat.cpistat(job)

	Bases: autotest.client.profiler.profiler

	
initialize(interval=1, **dargs)

	

	
start(test)

	

	
stop(test)

	

	
version = 1

	

ftrace Package

ftrace Module

Function tracer profiler for autotest.

	author:	David Sharp (dhsharp@google.com)

	
class autotest.client.profilers.ftrace.ftrace.ftrace(job)

	Bases: autotest.client.profiler.profiler

ftrace profiler for autotest. It builds ftrace from souce and runs
trace-cmd with configurable parameters.

@see: git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/trace-cmd.git

	
initialize(tracepoints, buffer_size_kb=1408, **kwargs)

	Initialize ftrace profiler.

	Parameters:	
	tracepoints – List containing a mix of tracpoint names and
(tracepoint name, filter) tuples. Tracepoint names are as
accepted by trace-cmd -e, eg “syscalls”, or
“syscalls:sys_enter_read”. Filters are as accepted by
trace-cmd -f, eg “((sig >= 10 && sig < 15) || sig == 17)”

	buffer_size_kb – Set the size of the ring buffer (per cpu).

	
static join_command(cmd)

	Shell escape the command for BgJob. grmbl.

	Parameters:	cmd – Command list.

	
mountpoint = '/sys/kernel/debug'

	

	
setup(tarball='trace-cmd.tar.bz2', **kwargs)

	Build and install trace-cmd from source.

The tarball was obtained by checking the git repo at 09-14-2010,
removing the Documentation and the .git folders, and compressing
it.

	Parameters:	
	tarball – Path to trace-cmd tarball.

	**kwargs – Dictionary with additional parameters.

	
start(test)

	Start ftrace profiler

	Parameters:	test – Autotest test in which the profiler will operate on.

	
stop(test)

	Stop ftrace profiler.

	Parameters:	test – Autotest test in which the profiler will operate on.

	
tracing_dir = '/sys/kernel/debug/tracing'

	

	
version = 1

	

inotify Package

inotify Module

inotify logs filesystem activity that may be directly or indirectly caused
by the test that is running. It requires the inotify-tools package, more
specifically, the inotifywait tool.

Heavily inspired / shamelessly copied from the kvm_stat profiler.

	copyright:	Red Hat 2013

	author:	Cleber Rosa <cleber@redhat.com>

	
class autotest.client.profilers.inotify.inotify.inotify(job)

	Bases: autotest.client.profiler.profiler

Profiler based on inotifywait from inotify-tools

	
initialize(paths=[])

	

	
report(test)

	

	
start(test)

	

	
stop(test)

	

	
version = 1

	

iostat Package

iostat Module

Run iostat with a default interval of 1 second.

	
class autotest.client.profilers.iostat.iostat.iostat(job)

	Bases: autotest.client.profiler.profiler

	
initialize(interval=1, options='', **dargs)

	

	
report(test)

	

	
start(test)

	

	
stop(test)

	

	
version = 2

	

kvm_stat Package

kvm_stat Module

kvm_stat prints statistics generated by the kvm module.
It depends on debugfs. If no debugfs is mounted, the profiler
will try to mount it so it’s possible to proceed.

	copyright:	Red Hat 2010

	author:	Lucas Meneghel Rodrigues (lmr@redhat.com)

	
class autotest.client.profilers.kvm_stat.kvm_stat.kvm_stat(job)

	Bases: autotest.client.profiler.profiler

kvm_stat based profiler. Consists on executing kvm_stat -l during a given
test execution, redirecting its output to a file on the profile dir.

	
initialize(**dargs)

	Gets path of kvm_stat and verifies if debugfs needs to be mounted.

	
report(test)

	Report function. Does nothing as there’s no postprocesing needed.

	Parameters:	test – Autotest test on which this profiler will operate on.

	
start(test)

	Starts kvm_stat subprocess.

	Parameters:	test – Autotest test on which this profiler will operate on.

	
stop(test)

	Stops profiler execution by sending a SIGTERM to kvm_stat process.

	Parameters:	test – Autotest test on which this profiler will operate on.

	
version = 1

	

lockmeter Package

lockmeter Module

Lockstat is the basic tool used to control the kernel’s Lockmeter
functionality: e.g., turning the kernel’s data gathering on or off, and
retrieving that data from the kernel so that Lockstat can massage it and
produce printed reports. See http://oss.sgi.com/projects/lockmeter for
details.

NOTE: if you get compile errors from config.h, referring you to a FAQ,
you might need to do ‘cat < /dev/null > /usr/include/linux/config.h’.
But read the FAQ first.

	
class autotest.client.profilers.lockmeter.lockmeter.lockmeter(job)

	Bases: autotest.client.profiler.profiler

	
initialize(**dargs)

	

	
report(test)

	

	
setup(tarball='lockstat-1.4.11.tar.bz2')

	

	
start(test)

	

	
stop(test)

	

	
version = 1

	

lttng Package

lttng Module

Trace kernel events with Linux Tracing Toolkit (lttng).
You need to install the lttng patched kernel in order to use the profiler.

Examples:

job.profilers.add('lttng', tracepoints = None): enable all trace points.
job.profilers.add('lttng', tracepoints = []): disable all trace points.
job.profilers.add('lttng', tracepoints = ['kernel_arch_syscall_entry',
 'kernel_arch_syscall_exit'])

will only trace syscall events.
Take a look at /proc/ltt for the list of the tracing events currently
supported by lttng and their output formats.

To view the collected traces, copy results/your-test/profiler/lttng
to a machine that has Linux Tracing Toolkit Viewer (lttv) installed:

test$ scp -r results/your-test/profiler/lttng user@localmachine:/home/tmp/

Then you can examine the traces either in text mode or in GUI:

localmachine$ lttv -m textDump -t /home/tmp/lttng

or

localmachine$ lttv-gui -t /home/tmp/lttng &

	
class autotest.client.profilers.lttng.lttng.lttng(job)

	Bases: autotest.client.profiler.profiler

	
initialize(outputsize=1048576, tracepoints=None, **dargs)

	

	
setup(tarball='ltt-control-0.51-12082008.tar.gz', **dargs)

	

	
start(test)

	

	
stop(test)

	

	
version = 1

	

mpstat Package

mpstat Module

Sets up a subprocess to run mpstat on a specified interval, default 1 second

	
class autotest.client.profilers.mpstat.mpstat.mpstat(job)

	Bases: autotest.client.profiler.profiler

	
initialize(interval=1, **dargs)

	

	
report(test)

	

	
start(test)

	

	
stop(test)

	

	
version = 1

	

oprofile Package

oprofile Module

OProfile is a system-wide profiler for Linux systems,
capable of profiling all running code at low overhead.
OProfile is released under the GNU GPL.

It consists of a kernel driver and a daemon for collecting sample data,
and several post-profiling tools for turning data into information.

More Info: http://oprofile.sourceforge.net/
Will need some libaries to compile. Do ‘apt-get build-dep oprofile’

	
class autotest.client.profilers.oprofile.oprofile.oprofile(job)

	Bases: autotest.client.profiler.profiler

	
initialize(vmlinux=None, events=[], others=None, local=None, **dargs)

	

	
report(test)

	

	
setup(tarball='oprofile-0.9.4.tar.bz2', local=None, *args, **dargs)

	

	
setup_done = False

	

	
start(test)

	

	
stop(test)

	

	
version = 7

	

perf Package

perf Module

perf is a tool included in the linux kernel tree that
supports functionality similar to oprofile and more.

@see: http://lwn.net/Articles/310260/

	
class autotest.client.profilers.perf.perf.perf(job)

	Bases: autotest.client.profiler.profiler

	
initialize(events=['cycles', 'instructions'], trace=False, **dargs)

	

	
report(test)

	

	
start(test)

	

	
stop(test)

	

	
version = 1

	

powertop Package

powertop Module

What’s eating the battery life of my laptop? Why isn’t it many more
hours? Which software component causes the most power to be burned?
These are important questions without a good answer... until now.

	
class autotest.client.profilers.powertop.powertop.powertop(job)

	Bases: autotest.client.profiler.profiler

	
preserve_srcdir = True

	

	
report(test)

	

	
setup(*args, **dargs)

	

	
start(test)

	

	
stop(test)

	

	
version = 1

	

readprofile Package

readprofile Module

readprofile - a tool to read kernel profiling information

The readprofile command uses the /proc/profile information to print ascii data
on standard output. The output is organized in three columns: the first is the
number of clock ticks, the second is the name of the C function in the kernel
where those many ticks occurred, and the third is the normalized `load’ of the
procedure, calculated as a ratio between the number of ticks and the length of
the procedure. The output is filled with blanks to ease readability.

	
class autotest.client.profilers.readprofile.readprofile.readprofile(job)

	Bases: autotest.client.profiler.profiler

	
initialize(**dargs)

	

	
report(test)

	

	
setup(tarball='util-linux-2.12r.tar.bz2')

	

	
start(test)

	

	
stop(test)

	

	
version = 1

	

sar Package

sar Module

Sets up a subprocess to run sar from the sysstat suite

Default options:
sar -A -f

	
class autotest.client.profilers.sar.sar.sar(job)

	Bases: autotest.client.profiler.profiler

The sar command writes to standard output the contents of selected
cumulative activity counters in the operating system. This profiler
executes sar and redirects its output in a file located in the profiler
results dir.

	
initialize(interval=1, **dargs)

	Set sar interval and verify what flags the installed sar supports.

	Parameters:	interval – Interval used by sar to produce system data.

	
report(test)

	Report function. Convert the binary sar data to text.

	Parameters:	test – Autotest test on which this profiler will operate on.

	
start(test)

	Starts sar subprocess.

	Parameters:	test – Autotest test on which this profiler will operate on.

	
stop(test)

	Stops profiler execution by sending a SIGTERM to sar process.

	Parameters:	test – Autotest test on which this profiler will operate on.

	
version = 1

	

systemtap Package

systemtap Module

Autotest systemtap profiler.

	
class autotest.client.profilers.systemtap.systemtap.systemtap(job)

	Bases: autotest.client.profiler.profiler

Tracing test process using systemtap tools.

	
initialize(**dargs)

	

	
report(test)

	

	
start(test)

	

	
stop(test)

	

	
version = 1

	

vmstat Package

vmstat Module

Runs vmstat X where X is the interval in seconds

Defaults options:
job.profilers.add(‘vmstat’, interval=1)

	
class autotest.client.profilers.vmstat.vmstat.vmstat(job)

	Bases: autotest.client.profiler.profiler

	
initialize(interval=1, **dargs)

	

	
report(test)

	

	
start(test)

	

	
stop(test)

	

	
version = 1

	

shared Package

autotemp Module

Autotest tempfile wrapper for mkstemp (known as tempfile here) and
mkdtemp (known as tempdir).

This wrapper provides a mechanism to clean up temporary files/dirs once they
are no longer need.

Files/Dirs will have a unique_id prepended to the suffix and a
autotmp tag appended to the prefix.

It is required that the unique_id param is supplied when a temp dir/file is
created.

	
class autotest.client.shared.autotemp.tempdir(suffix='', unique_id=None, prefix='', dir=None)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

A wrapper for tempfile.mkdtemp

@var name: The name of the temporary dir.
:return: A tempdir object
example usage:

b = autotemp.tempdir(unique_id=’exemdir’)
b.name # your directory
b.clean() # clean up after yourself

	
clean()

	Remove the temporary dir that was created.
This is also called by the destructor.

	
class autotest.client.shared.autotemp.tempfile(unique_id, suffix='', prefix='', dir=None, text=False)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

A wrapper for tempfile.mkstemp

	Parameters:	unique_id – required, a unique string to help identify what
part of code created the tempfile.

@var name: The name of the temporary file.
@var fd: the file descriptor of the temporary file that was created.
:return: a tempfile object
example usage:

t = autotemp.tempfile(unique_id=’fig’)
t.name # name of file
t.fd # file descriptor
t.fo # file object
t.clean() # clean up after yourself

	
clean()

	Remove the temporary file that was created.
This is also called by the destructor.

barrier Module

base_barrier Module

	
exception autotest.client.shared.base_barrier.BarrierAbortError

	Bases: autotest.client.shared.error.BarrierError

Special BarrierError raised when an explicit abort is requested.

	
class autotest.client.shared.base_barrier.barrier(hostid, tag, timeout=None, port=None, listen_server=None)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Multi-machine barrier support.

Provides multi-machine barrier mechanism.
Execution stops until all members arrive at the barrier.

Implementation Details:

When a barrier is forming the master node (first in sort order) in the
set accepts connections from each member of the set. As they arrive
they indicate the barrier they are joining and their identifier (their
hostname or IP address and optional tag). They are then asked to wait.
When all members are present the master node then checks that each
member is still responding via a ping/pong exchange. If this is
successful then everyone has checked in at the barrier. We then tell
everyone they may continue via a rlse message.

Where the master is not the first to reach the barrier the client
connects will fail. Client will retry until they either succeed in
connecting to master or the overall timeout is exceeded.

As an example here is the exchange for a three node barrier called
‘TAG’

	MASTER CLIENT1 CLIENT2

	<————-TAG C1————-
————–wait————–>

[...]

<————-TAG C2—————————–
————–wait——————————>

[...]

————–ping————–>
<————-pong—————
————–ping——————————>
<————-pong——————————-

—– BARRIER conditions MET —–

————–rlse————–>
————–rlse——————————>

Note that once the last client has responded to pong the barrier is
implicitly deemed satisifed, they have all acknowledged their presence.
If we fail to send any of the rlse messages the barrier is still a
success, the failed host has effectively broken ‘right at the beginning’
of the post barrier execution window.

In addition, there is another rendezvous, that makes each slave a server
and the master a client. The connection process and usage is still the
same but allows barriers from machines that only have a one-way
connection initiation. This is called rendezvous_servers.

	For example:

	
	if ME == SERVER:

	server start

b = job.barrier(ME, ‘server-up’, 120)
b.rendezvous(CLIENT, SERVER)

	if ME == CLIENT:

	client run

b = job.barrier(ME, ‘test-complete’, 3600)
b.rendezvous(CLIENT, SERVER)

	if ME == SERVER:

	server stop

Any client can also request an abort of the job by setting
abort=True in the rendezvous arguments.

	
rendezvous(*hosts, **dargs)

	

	
rendezvous_servers(masterid, *hosts, **dargs)

	

	
autotest.client.shared.base_barrier.get_host_from_id(hostid)

	

	
class autotest.client.shared.base_barrier.listen_server(address='', port=11922)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Manages a listening socket for barrier.

Can be used to run multiple barrier instances with the same listening
socket (if they were going to listen on the same port).

Attributes:

	Attr address:	Address to bind to (string).

	Attr port:	Port to bind to.

	Attr socket:	Listening socket object.

	
close()

	Close the listening socket.

base_check_version Module

	
class autotest.client.shared.base_check_version.base_check_python_version

	
	
PYTHON_BIN_GLOB_STRINGS = ['/usr/bin/python2*', '/usr/local/bin/python2*']

	

	
extract_version(path)

	

	
find_desired_python()

	Returns the path of the desired python interpreter.

	
restart()

	

base_job Module

	
class autotest.client.shared.base_job.TAPReport(enable, resultdir=None, global_filename='status')

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Deal with TAP reporting for the Autotest client.

	
job_statuses = {'END GOOD': True, 'GOOD': True, 'NOSTATUS': False, 'WARN': False, 'START': True, 'ERROR': False, 'FAIL': False, 'TEST_NA': False, 'ALERT': False, 'RUNNING': False, 'ABORT': False}

	

	
record(log_entry, indent, log_files)

	Append a job-level status event to self._reports_container. All
events will be written to TAP log files at the end of the test run.
Otherwise, it’s impossilble to determine the TAP plan.

	Parameters:	
	log_entry – A string status code describing the type of status
entry being recorded. It must pass log.is_valid_status to be
considered valid.

	indent – Level of the log_entry to determine the operation if
log_entry.operation is not given.

	log_files – List of full path of files the TAP report will be
written to at the end of the test.

	
record_keyval(path, dictionary, type_tag=None)

	Append a key-value pairs of dictionary to self._keyval_container in
TAP format. Once finished write out the keyval.tap file to the file
system.

If type_tag is None, then the key must be composed of alphanumeric
characters (or dashes + underscores). However, if type-tag is not
null then the keys must also have “{type_tag}” as a suffix. At
the moment the only valid values of type_tag are “attr” and “perf”.

	Parameters:	
	path – The full path of the keyval.tap file to be created

	dictionary – The keys and values.

	type_tag – The type of the values

	
classmethod tap_ok(success, counter, message)

	return a TAP message string.

	Parameters:	
	success – True for positive message string.

	counter – number of TAP line in plan.

	message – additional message to report in TAP line.

	
write()

	Write the TAP reports to files.

	
class autotest.client.shared.base_job.base_job(*args, **dargs)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

An abstract base class for the various autotest job classes.

	Property autodir:

	 	The top level autotest directory.

	Property clientdir:

	 	The autotest client directory.

	Property serverdir:

	 	The autotest server directory. [OPTIONAL]

	Property resultdir:

	 	The directory where results should be written out.
[WRITABLE]

	Property pkgdir:

	 	The job packages directory. [WRITABLE]

	Property tmpdir:

	 	The job temporary directory. [WRITABLE]

	Property testdir:

	 	The job test directory. [WRITABLE]

	Property customtestdir:

	 	The custom test directory. [WRITABLE]

	Property site_testdir:

	 	The job site test directory. [WRITABLE]

	Property bindir:

	 	The client bin/ directory.

	Property configdir:

	 	The client config/ directory.

	Property profdir:

	 	The client profilers/ directory.

	Property toolsdir:

	 	The client tools/ directory.

	Property conmuxdir:

	 	The conmux directory. [OPTIONAL]

	Property control:

	 	A path to the control file to be executed. [OPTIONAL]

	Property hosts:	A set of all live Host objects currently in use by the
job. Code running in the context of a local client can
safely assume that this set contains only a single entry.

	Property machines:

	 	A list of the machine names associated with the job.

	Property user:	The user executing the job.

	Property tag:	A tag identifying the job. Often used by the scheduler to
give a name of the form NUMBER-USERNAME/HOSTNAME.

	Property args:	A list of additional miscellaneous command-line arguments
provided when starting the job.

	Property last_boot_tag:

	 	The label of the kernel from the last reboot.
[OPTIONAL,PERSISTENT]

	Property automatic_test_tag:

	 	A string which, if set, will be automatically
added to the test name when running tests.

	Property default_profile_only:

	 	A boolean indicating the default value of
profile_only used by test.execute.
[PERSISTENT]

	Property drop_caches:

	 	A boolean indicating if caches should be dropped
before each test is executed.

	Property drop_caches_between_iterations:

	 	A boolean indicating if caches
should be dropped before each
test iteration is executed.

	Property run_test_cleanup:

	 	A boolean indicating if test.cleanup should be
run by default after a test completes, if the
run_cleanup argument is not specified.
[PERSISTENT]

	Property num_tests_run:

	 	The number of tests run during the job. [OPTIONAL]

	Property num_tests_failed:

	 	The number of tests failed during the job.
[OPTIONAL]

	Property bootloader:

	 	An instance of the boottool class. May not be
available on job instances where access to the
bootloader is not available (e.g. on the server
running a server job). [OPTIONAL]

	Property harness:

	 	An instance of the client test harness. Only available
in contexts where client test execution happens.
[OPTIONAL]

	Property logging:

	 	An instance of the logging manager associated with the
job.

	Property profilers:

	 	An instance of the profiler manager associated with
the job.

	Property sysinfo:

	 	An instance of the sysinfo object. Only available in
contexts where it’s possible to collect sysinfo.

	Property warning_manager:

	 	A class for managing which types of WARN
messages should be logged and which should be
suppressed. [OPTIONAL]

	Property warning_loggers:

	 	A set of readable streams that will be monitored
for WARN messages to be logged. [OPTIONAL]

	Abstract methods:

	
	_find_base_directories [CLASSMETHOD]

	Returns the location of autodir, clientdir and serverdir

	_find_resultdir

	Returns the location of resultdir. Gets a copy of any parameters
passed into base_job.__init__. Can return None to indicate that
no resultdir is to be used.

	_get_status_logger

	Returns a status_logger instance for recording job status logs.

	
autodir

	

	
automatic_test_tag

	

	
bindir

	

	
clientdir

	

	
configdir

	

	
conmuxdir

	

	
customtestdir

	

	
default_profile_only

	

	
get_state(name, default=<object object>)

	Returns the value associated with a particular name.

	Parameters:	
	name – The name the value was saved with.

	default – A default value to return if no state is currently
associated with var.

	Returns:	A deep copy of the value associated with name. Note that this
explicitly returns a deep copy to avoid problems with mutable
values; mutations are not persisted or shared.

	Raises:	KeyError when no state is associated with var and a
default value is not provided.

	
last_boot_tag

	

	
pkgdir

	

	
pop_execution_context()

	Reverse the effects of the previous push_execution_context call.

	Raises:	IndexError when the stack of contexts is empty.

	
profdir

	

	
push_execution_context(resultdir)

	Save off the current context of the job and change to the given one.

In practice method just changes the resultdir, but it may become more
extensive in the future. The expected use case is for when a child
job needs to be executed in some sort of nested context (for example
the way parallel_simple does). The original context can be restored
with a pop_execution_context call.

	Parameters:	resultdir – The new resultdir, relative to the current one.

	
record(status_code, subdir, operation, status='', optional_fields=None)

	Record a job-level status event.

Logs an event noteworthy to the Autotest job as a whole. Messages will
be written into a global status log file, as well as a subdir-local
status log file (if subdir is specified).

	Parameters:	
	status_code – A string status code describing the type of status
entry being recorded. It must pass
log.is_valid_status to be considered valid.

	subdir – A specific results subdirectory this also applies to, or
None. If not None the subdirectory must exist.

	operation – A string describing the operation that was run.

	status – An optional human-readable message describing the status
entry, for example an error message or “completed
successfully”.

	optional_fields – An optional dictionary of additional named
fields to be included with the status message.
Every time timestamp and localtime entries are
generated with the current time and added to
this dictionary.

	
record_entry(entry, log_in_subdir=True)

	Record a job-level status event, using a status_log_entry.

This is the same as self.record but using an existing status log
entry object rather than constructing one for you.

	Parameters:	
	entry – A status_log_entry object

	log_in_subdir – A boolean that indicates (when true) that subdir
logs should be written into the subdirectory
status log file.

	
resultdir

	

	
run_test_cleanup

	

	
serverdir

	

	
set_state(name, value)

	Saves the value given with the provided name.

	Parameters:	
	name – The name the value should be saved with.

	value – The value to save.

	
site_testdir

	

	
tag

	

	
testdir

	

	
tmpdir

	

	
toolsdir

	

	
use_sequence_number

	

	
class autotest.client.shared.base_job.job_directory(path, is_writable=False)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Represents a job.*dir directory.

	
exception JobDirectoryException

	Bases: autotest.client.shared.error.AutotestError

Generic job_directory exception superclass.

	
exception job_directory.MissingDirectoryException(path)

	Bases: autotest.client.shared.base_job.JobDirectoryException

Raised when a directory required by the job does not exist.

	
exception job_directory.UncreatableDirectoryException(path, error)

	Bases: autotest.client.shared.base_job.JobDirectoryException

Raised when a directory required by the job is missing and cannot
be created.

	
exception job_directory.UnwritableDirectoryException(path)

	Bases: autotest.client.shared.base_job.JobDirectoryException

Raised when a writable directory required by the job exists
but is not writable.

	
static job_directory.property_factory(attribute)

	Create a job.*dir -> job._*dir.path property accessor.

	Parameters:	attribute – A string with the name of the attribute this is
exposed as. ‘_’+attribute must then be attribute
that holds either None or a job_directory-like object

	Returns:	A read-only property object that exposes a job_directory path

	
class autotest.client.shared.base_job.job_state

	Bases: object [https://docs.python.org/2/library/functions.html#object]

A class for managing explicit job and user state, optionally persistent.

The class allows you to save state by name (like a dictionary). Any state
stored in this class should be picklable and deep copyable. While this is
not enforced it is recommended that only valid python identifiers be used
as names. Additionally, the namespace ‘stateful_property’ is used for
storing the valued associated with properties constructed using the
property_factory method.

	
NO_DEFAULT = <object object>

	

	
PICKLE_PROTOCOL = 2

	

	
discard(*args, **dargs)

	If namespace.name is a defined value, deletes it.

	Parameters:	
	namespace (string [https://docs.python.org/2/library/string.html#module-string]) – The namespace that the property should be stored in.

	name (string [https://docs.python.org/2/library/string.html#module-string]) – The name the value was saved with.

	
discard_namespace(*args, **dargs)

	Delete all defined namespace.* names.

	Parameters:	namespace (string [https://docs.python.org/2/library/string.html#module-string]) – The namespace to be cleared.

	
get(*args, **dargs)

	Returns the value associated with a particular name.

	Parameters:	
	namespace (string [https://docs.python.org/2/library/string.html#module-string]) – The namespace that the property should be stored in.

	name (string [https://docs.python.org/2/library/string.html#module-string]) – The name the value was saved with.

	default (object [https://docs.python.org/2/library/functions.html#object]) – A default value to return if no state is currently
associated with var.

	Returns:	A deep copy of the value associated with name. Note that this
explicitly returns a deep copy to avoid problems with mutable
values; mutations are not persisted or shared.

	Raises:	KeyError raised when no state is associated with var
and a default value is not provided.

	
has(*args, **dargs)

	Return a boolean indicating if namespace.name is defined.

	Parameters:	
	namespace (string [https://docs.python.org/2/library/string.html#module-string]) – The namespace that the property should be stored in.

	name (string [https://docs.python.org/2/library/string.html#module-string]) – The name the value was saved with.

	Returns:	True if the given name is defined in the given namespace and
False otherwise.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	
static property_factory(state_attribute, property_attribute, default, namespace='global_properties')

	Create a property object for an attribute using self.get and self.set.

	Parameters:	
	state_attribute – A string with the name of the attribute on
job that contains the job_state instance.

	property_attribute – A string with the name of the attribute
this property is exposed as.

	default – A default value that should be used for this property
if it is not set.

	namespace – The namespace to store the attribute value in.

	Returns:	A read-write property object that performs self.get calls
to read the value and self.set calls to set it.

	
read_from_file(file_path, merge=True)

	Read in any state from the file at file_path.

When merge=True, any state specified only in-memory will be
preserved. Any state specified on-disk will be set in-memory, even if an
in-memory setting already exists.

	Parameters:	
	file_path (string [https://docs.python.org/2/library/string.html#module-string]) – The path where the state should be read from. It must
exist but it can be empty.

	merge (bool [https://docs.python.org/2/library/functions.html#bool]) – If true, merge the on-disk state with the in-memory
state. If false, replace the in-memory state with the
on-disk state.

Warning: This method is intentionally concurrency-unsafe. It makes no
attempt to control concurrent access to the file at file_path.

	
set(*args, **dargs)

	Saves the value given with the provided name.

	Parameters:	
	namespace (string [https://docs.python.org/2/library/string.html#module-string]) – The namespace that the property should be stored in.

	name (string [https://docs.python.org/2/library/string.html#module-string]) – The name the value was saved with.

	value – The value to save.

	
set_backing_file(file_path)

	Change the path used as the backing file for the persistent state.

When a new backing file is specified if a file already exists then
its contents will be added into the current state, with conflicts
between the file and memory being resolved in favor of the file
contents. The file will then be kept in sync with the (combined)
in-memory state. The syncing can be disabled by setting this to None.

	Parameters:	file_path (string [https://docs.python.org/2/library/string.html#module-string]) – A path on the filesystem that can be read from and
written to, or None to turn off the backing store.

	
write_to_file(file_path)

	Write out the current state to the given path.

Warning: This method is intentionally concurrency-unsafe. It makes no
attempt to control concurrent access to the file at file_path.

	Parameters:	file_path (string [https://docs.python.org/2/library/string.html#module-string]) – The path where the state should be written out to.
Must be writable.

	
class autotest.client.shared.base_job.status_indenter

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Abstract interface that a status log indenter should use.

	
decrement()

	Decrease indentation by one level.

	
increment()

	Increase indentation by one level.

	
indent

	

	
class autotest.client.shared.base_job.status_log_entry(status_code, subdir, operation, message, fields, timestamp=None)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Represents a single status log entry.

	
BAD_CHAR_REGEX = <_sre.SRE_Pattern object>

	

	
LOCALTIME_FIELD = 'localtime'

	

	
RENDERED_NONE_VALUE = '----'

	

	
TIMESTAMP_FIELD = 'timestamp'

	

	
is_end()

	Indicates if this status log is the end of a nested block.

	Returns:	A boolean indicating if this entry ends a nested block.

	
is_start()

	Indicates if this status log is the start of a new nested block.

	Returns:	A boolean indicating if this entry starts a new nested block.

	
classmethod parse(line)

	Parse a status log entry from a text string.

This method is the inverse of render; it should always be true that
parse(entry.render()) produces a new status_log_entry equivalent to
entry.

	Returns:	A new status_log_entry instance with fields extracted from
the given status line. If the line is an extra message line
then None is returned.

	
render()

	Render the status log entry into a text string.

	Returns:	A text string suitable for writing into a status log file.

	
class autotest.client.shared.base_job.status_logger(job, indenter, global_filename='status', subdir_filename='status', record_hook=None, tap_writer=None)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Represents a status log file. Responsible for translating messages
into on-disk status log lines.

	Property global_filename:

	 	The filename to write top-level logs to.

	Property subdir_filename:

	 	The filename to write subdir-level logs to.

	
record_entry(log_entry, log_in_subdir=True)

	Record a status_log_entry into the appropriate status log files.

	Parameters:	
	log_entry – A status_log_entry instance to be recorded into the
status logs.

	log_in_subdir – A boolean that indicates (when true) that subdir
logs should be written into the subdirectory status
log file.

	
render_entry(log_entry)

	Render a status_log_entry as it would be written to a log file.

	Parameters:	log_entry – A status_log_entry instance to be rendered.

	Returns:	The status log entry, rendered as it would be written to the
logs (including indentation).

	
autotest.client.shared.base_job.with_backing_file(method)

	A decorator to perform a lock-read-*-write-unlock cycle.

When applied to a method, this decorator will automatically wrap
calls to the method in a lock-and-read before the call followed by a
write-and-unlock. Any operation that is reading or writing state
should be decorated with this method to ensure that backing file
state is consistently maintained.

	
autotest.client.shared.base_job.with_backing_lock(method)

	A decorator to perform a lock-*-unlock cycle.

When applied to a method, this decorator will automatically wrap
calls to the method in a backing file lock and before the call
followed by a backing file unlock.

base_packages Module

This module defines the BasePackageManager Class which provides an
implementation of the packaging system API providing methods to fetch,
upload and remove packages. Site specific extensions to any of these methods
should inherit this class.

	
class autotest.client.shared.base_packages.BasePackageManager(pkgmgr_dir, hostname=None, repo_urls=None, upload_paths=None, do_locking=True, run_function=<function run>, run_function_args=[], run_function_dargs={})

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	
add_repository(repo)

	

	
compare_checksum(pkg_path, repo_url)

	Calculate the checksum of the file specified in pkg_path and
compare it with the checksum in the checksum file
Return True if both match else return False.
:param pkg_path: The full path to the package file for which the
checksum is being compared
:param repo_url: The URL to fetch the checksum from

	
compute_checksum(pkg_path)

	Compute the MD5 checksum for the package file and return it.
pkg_path : The complete path for the package file

	
fetch_pkg(pkg_name, dest_path, repo_url=None, use_checksum=False, install=False)

	Fetch the package into dest_dir from repo_url. By default repo_url
is None and the package is looked in all the repositories specified.
Otherwise it fetches it from the specific repo_url.
pkg_name : name of the package (ex: test-sleeptest.tar.bz2,

dep-gcc.tar.bz2, kernel.1-1.rpm)

repo_url : the URL of the repository where the package is located.
dest_path : complete path of where the package will be fetched to.
use_checksum : This is set to False to fetch the packages.checksum file

so that the checksum comparison is bypassed for the
checksum file itself. This is used internally by the
packaging system. It should be ignored by externals
callers of this method who use it fetch custom packages.

	install : install path has unique name and destination requirements

	that vary based on the fetcher that is used. So call them
here as opposed to install_pkg.

	
get_fetcher(url)

	

	
get_mirror_list(repo_urls)

	Stub function for site specific mirrors.

	Returns:

	Priority ordered list

	
get_package_name(url, pkg_type)

	Extract the group and test name for the url. This method is currently
used only for tests.

	
static get_tarball_name(name, pkg_type)

	Converts a package name and type into a tarball name.

	Parameters:	
	name – The name of the package

	pkg_type – The type of the package

	Returns:	A tarball filename for that specific type of package

	
install_pkg(name, pkg_type, fetch_dir, install_dir, preserve_install_dir=False, repo_url=None)

	Remove install_dir if it already exists and then recreate it unless
preserve_install_dir is specified as True.
Fetch the package into the pkg_dir. Untar the package into install_dir
The assumption is that packages are of the form :
<pkg_type>.<pkg_name>.tar.bz2
name : name of the package
type : type of the package
fetch_dir : The directory into which the package tarball will be

fetched to.

install_dir : the directory where the package files will be untarred to
repo_url : the url of the repository to fetch the package from.

	
static parse_tarball_name(tarball_name)

	Coverts a package tarball name into a package name and type.

	Parameters:	tarball_name – The filename of the tarball

	Returns:	(name, pkg_type) where name is the package name and pkg_type
is the package type.

	
remove_checksum(pkg_name)

	Remove the checksum of the package from the packages checksum file.
This method is called whenever a package is removed from the
repositories in order clean its corresponding checksum.
pkg_name : The name of the package to be removed

	
remove_pkg(pkg_name, remove_path=None, remove_checksum=False)

	Remove the package from the specified remove_path
pkg_name : name of the package (ex: test-sleeptest.tar.bz2,

dep-gcc.tar.bz2)

remove_path : the location to remove the package from.

	
remove_pkg_file(filename, pkg_dir)

	Remove the file named filename from pkg_dir

	
repo_check(repo)

	Check to make sure the repo is in a sane state:
ensure we have at least XX amount of free space
Make sure we can write to the repo

	
tar_package(pkg_name, src_dir, dest_dir, include_string=None, exclude_string=None)

	Create a tar.bz2 file with the name ‘pkg_name’ say test-blah.tar.bz2.

Includes the files specified in include_string, and excludes the files
specified on the exclude string, while tarring the source. Returns the
destination tarball path.

	Parameters:	
	pkg_name – Package name.

	src_dir – Directory that contains the data to be packaged.

	dest_dir – Directory that will hold the destination tarball.

	include_string – Pattern that represents the files that will be
added to the tar package.

	exclude_string – Pattern that represents the files that should be
excluded from the tar package. It could be either a string or
a list.

	
untar_pkg(tarball_path, dest_dir)

	Untar the package present in the tarball_path and put a
”.checksum” file in the dest_dir containing the checksum
of the tarball. This method
assumes that the package to be untarred is of the form
<name>.tar.bz2

	
untar_required(tarball_path, dest_dir)

	Compare the checksum of the tarball_path with the .checksum file
in the dest_dir and return False if it matches. The untar
of the package happens only if the checksums do not match.

	
update_checksum(pkg_path)

	Update the checksum of the package in the packages’ checksum
file. This method is called whenever a package is fetched just
to be sure that the checksums in the local file are the latest.
pkg_path : The complete path to the package file.

	
upkeep(custom_repos=None)

	Clean up custom upload/download areas

	
upload_pkg(pkg_path, upload_path=None, update_checksum=False, timeout=300)

	

	
upload_pkg_dir(dir_path, upload_path)

	Upload a full directory. Depending on the upload path, the appropriate
method for that protocol is called. Currently this copies the whole
tmp package directory to the target directory.
This assumes that the web server is running on the same machine where
the method is being called from. The upload_path’s files are
basically served by that web server.

	
upload_pkg_file(file_path, upload_path)

	Upload a single file. Depending on the upload path, the appropriate
method for that protocol is called. Currently this simply copies the
file to the target directory (but can be extended for other protocols)
This assumes that the web server is running on the same machine where
the method is being called from. The upload_path’s files are
basically served by that web server.

	
upload_pkg_parallel(pkg_path, upload_path, update_checksum=False)

	Uploads to a specified upload_path or to all the repos.
Also uploads the checksum file to all the repos.
pkg_path : The complete path to the package file
upload_path : the absolute path where the files are copied to.

if set to ‘None’ assumes ‘all’ repos

	update_checksum : If set to False, the checksum file is not

	going to be updated which happens by default.
This is necessary for custom
packages (like custom kernels and custom tests)
that get uploaded which do not need to be part of
the checksum file and bloat it.

	
class autotest.client.shared.base_packages.GitFetcher(package_manager, repository_url)

	Bases: autotest.client.shared.base_packages.RepositoryFetcher

A git based repository fetcher

	
fetch_pkg_file(filename, dest_path)

	Fetch a package file and save it to the given destination path

git is an SCM, you can download the test directly. No need to fetch
a bz2’d tarball file. However ‘filename’ is <type>-<name>.tar.bz2
break this up and only fetch <name>.

	Parameters:	
	filename (string [https://docs.python.org/2/library/string.html#module-string]) – The filename of the package file to fetch.

	dest_path (string [https://docs.python.org/2/library/string.html#module-string]) – Destination path to download the file to.

	
git_archive_cmd_pattern = 'git archive --remote=%s -o %s %s'

	

	
install_pkg_post(filename, fetch_dir, install_dir, preserve_install_dir=False)

	

	
class autotest.client.shared.base_packages.HttpFetcher(package_manager, repository_url)

	Bases: autotest.client.shared.base_packages.RepositoryFetcher

Repository Fetcher using HTTP

	
fetch_pkg_file(filename, dest_path)

	Fetch a package file from a package repository.

	Parameters:	
	filename (string [https://docs.python.org/2/library/string.html#module-string]) – The filename of the package file to fetch.

	dest_path (string [https://docs.python.org/2/library/string.html#module-string]) – Destination path to download the file to.

	Raises:	PackageFetchError – if the fetch failed

	
wget_cmd_pattern = 'wget --connect-timeout=15 -nv %s -O %s'

	

	
class autotest.client.shared.base_packages.LocalFilesystemFetcher(package_manager, repository_url)

	Bases: autotest.client.shared.base_packages.RepositoryFetcher

	
fetch_pkg_file(filename, dest_path)

	

	
class autotest.client.shared.base_packages.RepositoryFetcher(package_manager, repository_url)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Base class with common functionality for repository fetchers

	
fetch_pkg_file(filename, dest_path)

	Fetch a package file from a package repository.

	Parameters:	
	filename (string [https://docs.python.org/2/library/string.html#module-string]) – The filename of the package file to fetch.

	dest_path (string [https://docs.python.org/2/library/string.html#module-string]) – Destination path to download the file to.

	Raises:	PackageFetchError – if the fetch failed

	
install_pkg_post(filename, fetch_dir, install_dir, preserve_install_dir=False)

	Fetcher specific post install

	Parameters:	
	filename (string [https://docs.python.org/2/library/string.html#module-string]) – The filename of the package to install

	fetch_dir (string [https://docs.python.org/2/library/string.html#module-string]) – The fetched path of the package

	install_dir (string [https://docs.python.org/2/library/string.html#module-string]) – The path to install the package to

@preserve_install_dir: Preserve the install directory

	
install_pkg_setup(name, fetch_dir, install)

	Install setup for a package based on fetcher type.

	Parameters:	
	name (string [https://docs.python.org/2/library/string.html#module-string]) – The filename to be munged

	fetch_dir (string [https://docs.python.org/2/library/string.html#module-string]) – The destination path to be munged

	install (boolean) – Whether this is be called from the install path or not

	Returns:	tuple with (name, fetch_dir)

	
url = None

	

	
autotest.client.shared.base_packages.check_diskspace(repo, min_free=None)

	Check if the remote directory over at the pkg repo has available diskspace

If the amount of free space is not supplied, it is taken from the global
configuration file, section [PACKAGES], key ‘mininum_free_space’. The unit
used are in SI, that is, 1 GB = 10**9 bytes.

	Parameters:	repo (string [https://docs.python.org/2/library/string.html#module-string]) – a remote package repo URL

	Param:	min_free mininum amount of free space, in GB (10**9 bytes)

	Raises:	
	error.RepoUnknownError – general repository error condition

	error.RepoDiskFullError – repository does not have at least the
requested amount of free disk space.

	
autotest.client.shared.base_packages.check_write(repo)

	Checks that the remote repository directory is writable

	Parameters:	repo (string [https://docs.python.org/2/library/string.html#module-string]) – a remote package repo URL

	Raises:	error.RepoWriteError – repository write error

	
autotest.client.shared.base_packages.create_directory(repo)

	Create a directory over at the remote repository

	Parameters:	repo (string [https://docs.python.org/2/library/string.html#module-string]) – the repo URL containing the remote directory path

	Returns:	a CmdResult object or None

	
autotest.client.shared.base_packages.has_pbzip2()

	Check if parallel bzip2 is available on this system.

	Returns:	True if pbzip2 is available, False otherwise

	
autotest.client.shared.base_packages.parse_ssh_path(repo)

	Parse an SSH url

	Parameters:	repo (string [https://docs.python.org/2/library/string.html#module-string]) – a repo uri like ssh://xx@xx/path/to/

	Returns:	tuple with (host, remote_path)

	
autotest.client.shared.base_packages.repo_run_command(repo, cmd, ignore_status=False, cd=True)

	Run a command relative to the repo path

This is basically a utils.run() wrapper that sets itself in a repo
directory if it is appropriate, so parameters such as cmd and ignore_status
are passed along to it.

	Parameters:	
	repo (string [https://docs.python.org/2/library/string.html#module-string]) – a repository url

	cmd (string [https://docs.python.org/2/library/string.html#module-string]) – the command to be executed. This is passed along to utils.run()

	ignore_status (boolean) – do not raise an exception, no matter what the exit
code of the command is.

	cd (boolean) – wether to change the working directory to the repo directory
before running the specified command.

	Returns:	a CmdResult object or None

	Raises:	CmdError – the exit code of the command execution was not 0

	
autotest.client.shared.base_packages.trim_custom_directories(repo, older_than_days=None)

	Remove old files from the remote repo directory

The age of the files, if not provided by the older_than_days parameter is
taken from the global configuration file, at section [PACKAGES],
configuration item ‘custom_max_age’.

	Parameters:	repo (string [https://docs.python.org/2/library/string.html#module-string]) – a remote package repo URL

base_syncdata Module

	
class autotest.client.shared.base_syncdata.SessionData(hosts, timeout)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	
close()

	

	
is_finished()

	

	
set_finish()

	

	
timeout()

	

	
class autotest.client.shared.base_syncdata.SyncData(masterid, hostid, hosts, session_id=None, listen_server=None, port=13234, tmpdir=None)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Provides data synchronization between hosts.

Transferred data is pickled and sent to all destination points.
If there is no listen server it will create a new one. If multiple hosts
wants to communicate with each other, then communications are identified
by session_id.

	
close()

	

	
single_sync(data=None, timeout=60, session_id=None)

	

	
sync(data=None, timeout=60, session_id=None)

	Synchronize data between hosts.

	
timeout()

	

	
class autotest.client.shared.base_syncdata.SyncListenServer(address='', port=13234, tmpdir=None)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	
close()

	Close SyncListenServer thread.

Close all open connection with clients and listen server.

	
class autotest.client.shared.base_syncdata.TempDir(tmpdir=None)

	Bases: autotest.client.shared.autotemp.tempdir

TempDir class is tempdir for predefined tmpdir.

	
clean()

	Should not delete predefined tmpdir.

	
autotest.client.shared.base_syncdata.net_recv_object(sock, timeout=60)

	Receive python object over network.

	Parameters:	
	ip_addr – ipaddres of waiter for data.

	obj – object to send

	Returns:	object from network

	
autotest.client.shared.base_syncdata.net_send_object(sock, obj)

	Send python object over network.

	Parameters:	
	ip_addr – ipaddres of waiter for data.

	obj – object to send

boottool Module

boottool client-side module.

This module provides an API for client side tests that need to manipulate
boot entries. It’s based on the rewrite of boottool, now python and grubby
based. It aims to be keep API compatibility with the older version, except
from XEN support which has been removed. We’ll gladly accept patches that
provide full coverage for this mode/feature.

Copyright 2009 Google Inc.
Copyright 2012 Red Hat, Inc.

Released under the GPL v2

	
class autotest.client.shared.boottool.boottool(path=None)

	Bases: autotest.client.tools.boottool.Grubby

Client site side boottool wrapper.

Inherits all functionality from boottool(.py) CLI app (lazily).

check_version Module

	
class autotest.client.shared.check_version.check_python_version

	Bases: autotest.client.shared.check_version.site_check_python_version, autotest.client.shared.base_check_version.base_check_python_version

	
class autotest.client.shared.check_version.site_check_python_version

	

common Module

control_data Module

	
class autotest.client.shared.control_data.ControlData(vars, path, raise_warnings=False)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	
set_attr(attr, val, raise_warnings=False)

	

	
set_author(val)

	

	
set_dependencies(val)

	

	
set_doc(val)

	

	
set_experimental(val)

	

	
set_name(val)

	

	
set_run_verify(val)

	

	
set_sync_count(val)

	

	
set_test_category(val)

	

	
set_test_class(val)

	

	
set_test_parameters(val)

	

	
set_test_type(val)

	

	
set_time(val)

	

	
exception autotest.client.shared.control_data.ControlVariableException

	Bases: exceptions.Exception [https://docs.python.org/2/library/exceptions.html#exceptions.Exception]

	
autotest.client.shared.control_data.parse_control(path, raise_warnings=False)

	

distro Module

This module provides the client facilities to detect the Linux Distribution
it’s running under.

This is a replacement for the get_os_vendor() function from the utils module.

	
class autotest.client.shared.distro.LinuxDistro(name, version, release, arch)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Simple collection of information for a Linux Distribution

	
class autotest.client.shared.distro.Probe

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Probes the machine and does it best to confirm it’s the right distro

	
CHECK_FILE = None

	Points to a file that can determine if this machine is running a given
Linux Distribution. This servers a first check that enables the extra
checks to carry on.

	
CHECK_FILE_CONTAINS = None

	Sets the content that should be checked on the file pointed to by
CHECK_FILE_EXISTS. Leave it set to None (its default)
to check only if the file exists, and not check its contents

	
CHECK_FILE_DISTRO_NAME = None

	The name of the Linux Distribution to be returned if the file defined
by CHECK_FILE_EXISTS exist.

	
CHECK_VERSION_REGEX = None

	A regular expresion that will be run on the file pointed to by
CHECK_FILE_EXISTS

	
check_name_for_file()

	Checks if this class will look for a file and return a distro

The conditions that must be true include the file that identifies the
distro file being set (CHECK_FILE) and the name of the
distro to be returned (CHECK_FILE_DISTRO_NAME)

	
check_name_for_file_contains()

	Checks if this class will look for text on a file and return a distro

The conditions that must be true include the file that identifies the
distro file being set (CHECK_FILE), the text to look for
inside the distro file (CHECK_FILE_CONTAINS) and the name
of the distro to be returned (CHECK_FILE_DISTRO_NAME)

	
check_release()

	Checks if this has the conditions met to look for the release number

	
check_version()

	Checks if this class will look for a regex in file and return a distro

	
get_distro()

	Returns the LinuxDistro this probe detected

	
name_for_file()

	Get the distro name if the CHECK_FILE is set and exists

	
name_for_file_contains()

	Get the distro if the CHECK_FILE is set and has content

	
release()

	Returns the release of the distro

	
version()

	Returns the version of the distro

	
autotest.client.shared.distro.register_probe(probe_class)

	Register a probe to be run during autodetection

	
autotest.client.shared.distro.detect()

	Attempts to detect the Linux Distribution running on this machine

	Returns:	the detected LinuxDistro or UNKNOWN_DISTRO

	Return type:	LinuxDistro

distro_def Module

This module defines a structure and portable format for relevant information
on Linux Distributions in such a way that information about known distros
can be packed and distributed.

Please note that this module deals with Linux Distributions not necessarily
installed on the running system.

	
autotest.client.shared.distro_def.save(linux_distro, path)

	Saves the linux_distro to an external file format

	Parameters:	
	linux_distro (DistroDef) – an DistroDef instance

	path (str [https://docs.python.org/2/library/functions.html#str]) – the location for the output file

	Returns:	None

	
autotest.client.shared.distro_def.load(path)

	Loads the distro from an external file

	Parameters:	path (str [https://docs.python.org/2/library/functions.html#str]) – the location for the input file

	Returns:	an DistroDef instance

	Return type:	DistroDef

	
autotest.client.shared.distro_def.load_from_tree(name, version, release, arch, package_type, path)

	Loads a DistroDef from an installable tree

	Parameters:	
	name (str [https://docs.python.org/2/library/functions.html#str]) – a short name that precisely distinguishes this Linux
Distribution among all others.

	version (str [https://docs.python.org/2/library/functions.html#str]) – the major version of the distribution. Usually this
is a single number that denotes a large development
cycle and support file.

	release (str [https://docs.python.org/2/library/functions.html#str]) – the release or minor version of the distribution.
Usually this is also a single number, that is often
omitted or starts with a 0 when the major version
is initially release. It’s ofter associated with a
shorter development cycle that contains incremental
a collection of improvements and fixes.

	arch (str [https://docs.python.org/2/library/functions.html#str]) – the main target for this Linux Distribution. It’s common
for some architectures to ship with packages for
previous and still compatible architectures, such as it’s
the case with Intel/AMD 64 bit architecture that support
32 bit code. In cases like this, this should be set to
the 64 bit architecture name.

	package_type (str [https://docs.python.org/2/library/functions.html#str]) – one of the available package info loader types

	path (str [https://docs.python.org/2/library/functions.html#str]) – top level directory of the distro installation tree files

	
class autotest.client.shared.distro_def.SoftwarePackage(name, version, release, checksum, arch)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Definition of relevant information on a software package

	
class autotest.client.shared.distro_def.DistroDef(name, version, release, arch)

	Bases: autotest.client.shared.distro.LinuxDistro

More complete information on a given Linux Distribution

	
software_packages = None

	All the software packages that ship with this Linux distro

	
software_packages_type = None

	A simple text that denotes the software type that makes this distro

	
autotest.client.shared.distro_def.DISTRO_PKG_INFO_LOADERS = {'deb': <class 'autotest.client.shared.distro_def.DistroPkgInfoLoaderDeb'>, 'rpm': <class 'autotest.client.shared.distro_def.DistroPkgInfoLoaderRpm'>}

	the type of distro that will determine what loader will be used

enum Module

Generic enumeration support.

	
class autotest.client.shared.enum.Enum(*names, **kwargs)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Utility class to implement Enum-like functionality.

>>> e = Enum('String one', 'String two')
>>> e.STRING_ONE
0
>>> e.STRING_TWO
1
>>> e.choices()
[(0, 'String one'), (1, 'String two')]
>>> e.get_value('String one')
0
>>> e.get_string(0)
'String one'

>>> e = Enum('Hello', 'Goodbye', string_values=True)
>>> e.HELLO, e.GOODBYE
('Hello', 'Goodbye')

>>> e = Enum('One', 'Two', start_value=1)
>>> e.ONE
1
>>> e.TWO
2

	
choices()

	Return choice list suitable for Django model choices.

	
static get_attr_name(string)

	

	
get_string(value)

	Given a value, get the string name for it.

	
get_value(name)

	Convert a string name to it’s corresponding value. If a value
is passed in, it is returned.

error Module

Internal global error types

	
autotest.client.shared.error.format_error()

	

	
autotest.client.shared.error.context_aware(fn)

	A decorator that must be applied to functions that call context().

	
autotest.client.shared.error.context(s='', log=None)

	Set the context for the currently executing function and optionally log it.

	Parameters:	
	s – A string. If not provided, the context for the current function
will be cleared.

	log – A logging function to pass the context message to. If None, no
function will be called.

	
autotest.client.shared.error.get_context()

	Return the current context (or None if none is defined).

	
autotest.client.shared.error.exception_context(e)

	Return the context of a given exception (or None if none is defined).

	
exception autotest.client.shared.error.AutoservHostIsShuttingDownError

	Bases: autotest.client.shared.error.AutoservHostError

Host is shutting down

	
exception autotest.client.shared.error.AutoservShutdownError

	Bases: autotest.client.shared.error.AutoservRebootError

Error occurred during shutdown of machine

	
exception autotest.client.shared.error.AutoservHardwareRepairRequiredError

	Bases: autotest.client.shared.error.AutoservError

Exception class raised during repairs to indicate that a hardware repair
is going to be necessary.

	
exception autotest.client.shared.error.RepoWriteError

	Bases: autotest.client.shared.error.PackagingError

Raised when packager cannot write to a repo’s desitnation

	
exception autotest.client.shared.error.AutoservUnsupportedError

	Bases: autotest.client.shared.error.AutoservError

Error raised when you try to use an unsupported optional feature

	
exception autotest.client.shared.error.CmdError(command, result_obj, additional_text=None)

	Bases: autotest.client.shared.error.TestError

Indicates that a command failed, is fatal to the test unless caught.

	
exception autotest.client.shared.error.AutotestError

	Bases: exceptions.Exception [https://docs.python.org/2/library/exceptions.html#exceptions.Exception]

The parent of all errors deliberately thrown within the client code.

	
exception autotest.client.shared.error.RepoDiskFullError

	Bases: autotest.client.shared.error.PackagingError

Raised when the destination for packages is full

	
exception autotest.client.shared.error.AutoservRebootError

	Bases: autotest.client.shared.error.AutoservError

Error occurred while rebooting a machine

	
exception autotest.client.shared.error.TestWarn

	Bases: autotest.client.shared.error.TestBaseException

Indicates that bad things (may) have happened, but not an explicit
failure.

	
exit_status = 'WARN'

	

	
exception autotest.client.shared.error.PackageInstallError

	Bases: autotest.client.shared.error.PackagingError

Raised when there is an error installing the package

	
exception autotest.client.shared.error.HostInstallProfileError

	Bases: autotest.client.shared.error.JobError

Indicates the machine failed to have a profile assigned.

	
exception autotest.client.shared.error.PackageError

	Bases: autotest.client.shared.error.TestError

Indicates an error trying to perform a package operation.

	
exception autotest.client.shared.error.AutotestHostRunError(description, result_obj)

	Bases: autotest.client.shared.error.HostRunErrorMixIn, autotest.client.shared.error.AutotestError

	
exception autotest.client.shared.error.UnhandledTestFail(unhandled_exception)

	Bases: autotest.client.shared.error.TestFail

Indicates an unhandled fail in a test.

	
exception autotest.client.shared.error.BarrierAbortError

	Bases: autotest.client.shared.error.BarrierError

Indicate that the barrier was explicitly aborted by a member.

	
exception autotest.client.shared.error.AutoservSubcommandError(func, exit_code)

	Bases: autotest.client.shared.error.AutoservError

Indicates an error while executing a (forked) subcommand

	
exception autotest.client.shared.error.NetCommunicationError

	Bases: autotest.client.shared.error.JobError

Indicate that network communication was broken.

	
exception autotest.client.shared.error.PackageRemoveError

	Bases: autotest.client.shared.error.PackagingError

Raised when there is an error removing the package

	
exception autotest.client.shared.error.UnhandledTestError(unhandled_exception)

	Bases: autotest.client.shared.error.TestError

Indicates an unhandled error in a test.

	
exception autotest.client.shared.error.DataSyncError

	Bases: autotest.client.shared.error.NetCommunicationError

Indicates problem during synchronization data over network.

	
exception autotest.client.shared.error.AutoservHostError

	Bases: autotest.client.shared.error.AutoservError

Error reaching a host

	
exception autotest.client.shared.error.TestBaseException

	Bases: autotest.client.shared.error.AutotestError

The parent of all test exceptions.

	
exit_status = 'NEVER_RAISE_THIS'

	

	
exception autotest.client.shared.error.TestNAError

	Bases: autotest.client.shared.error.TestBaseException

Indictates that the test is Not Applicable. Should be thrown
when various conditions are such that the test is inappropriate.

	
exit_status = 'TEST_NA'

	

	
exception autotest.client.shared.error.AutoservHardwareHostError

	Bases: autotest.client.shared.error.AutoservHostError

Found hardware problems with the host

	
exception autotest.client.shared.error.AutoservError

	Bases: exceptions.Exception [https://docs.python.org/2/library/exceptions.html#exceptions.Exception]

	
exception autotest.client.shared.error.AutoservSSHTimeout

	Bases: autotest.client.shared.error.AutoservError

SSH experienced a connection timeout

	
exception autotest.client.shared.error.InstallError

	Bases: autotest.client.shared.error.JobError

Indicates an installation error which Terminates and fails the job.

	
exception autotest.client.shared.error.AutoservDiskFullHostError(path, want_gb, free_space_gb)

	Bases: autotest.client.shared.error.AutoservHostError

Not enough free disk space on host

	
exception autotest.client.shared.error.AutoservInstallError

	Bases: autotest.client.shared.error.AutoservError

Error occurred while installing autotest on a host

	
exception autotest.client.shared.error.TestError

	Bases: autotest.client.shared.error.TestBaseException

Indicates that something went wrong with the test harness itself.

	
exit_status = 'ERROR'

	

	
exception autotest.client.shared.error.AutoservVirtError

	Bases: autotest.client.shared.error.AutoservError

Vitualization related error

	
exception autotest.client.shared.error.BarrierError

	Bases: autotest.client.shared.error.JobError

Indicates an error happened during a barrier operation.

	
exception autotest.client.shared.error.AutotestRunError

	Bases: autotest.client.shared.error.AutotestError

Indicates a problem running server side control files.

	
exception autotest.client.shared.error.RepoError

	Bases: autotest.client.shared.error.PackagingError

Raised when a repo isn’t working in some way

	
exception autotest.client.shared.error.PackagingError

	Bases: autotest.client.shared.error.AutotestError

Abstract error class for all packaging related errors.

	
exception autotest.client.shared.error.RepoUnknownError

	Bases: autotest.client.shared.error.PackagingError

Raised when packager cannot write to a repo’s desitnation

	
exception autotest.client.shared.error.UnhandledJobError(unhandled_exception)

	Bases: autotest.client.shared.error.JobError

Indicates an unhandled error in a job.

	
exception autotest.client.shared.error.TestFail

	Bases: autotest.client.shared.error.TestBaseException

Indicates that the test failed, but the job will not continue.

	
exit_status = 'FAIL'

	

	
exception autotest.client.shared.error.JobError

	Bases: autotest.client.shared.error.AutotestError

Indicates an error which terminates and fails the whole job (ABORT).

	
exception autotest.client.shared.error.AutoservRunError(description, result_obj)

	Bases: autotest.client.shared.error.HostRunErrorMixIn, autotest.client.shared.error.AutoservError

	
exception autotest.client.shared.error.PackageFetchError

	Bases: autotest.client.shared.error.PackagingError

Raised when there is an error fetching the package

	
exception autotest.client.shared.error.PackageUploadError

	Bases: autotest.client.shared.error.PackagingError

Raised when there is an error uploading the package

	
exception autotest.client.shared.error.AutoservHardwareRepairRequestedError

	Bases: autotest.client.shared.error.AutoservError

Exception class raised from Host.repair_full() (or overrides) when software
repair fails but it successfully managed to request a hardware repair (by
notifying the staff, sending mail, etc)

	
exception autotest.client.shared.error.HostRunErrorMixIn(description, result_obj)

	Bases: exceptions.Exception [https://docs.python.org/2/library/exceptions.html#exceptions.Exception]

Indicates a problem in the host run() function raised from client code.
Should always be constructed with a tuple of two args (error description
(str), run result object). This is a common class mixed in to create the
client and server side versions of it.

	
exception autotest.client.shared.error.HarnessError

	Bases: autotest.client.shared.error.JobError

Indicates problem with the harness.

	
exception autotest.client.shared.error.AutoservNotMountedHostError

	Bases: autotest.client.shared.error.AutoservHostError

Found unmounted partitions that should be mounted

	
exception autotest.client.shared.error.AutoservSshPermissionDeniedError(description, result_obj)

	Bases: autotest.client.shared.error.AutoservRunError

Indicates that a SSH permission denied error was encountered.

	
exception autotest.client.shared.error.HostInstallTimeoutError

	Bases: autotest.client.shared.error.JobError

Indicates the machine failed to be installed after the predetermined
timeout.

	
exception autotest.client.shared.error.AutoservSshPingHostError

	Bases: autotest.client.shared.error.AutoservHostError

SSH ping failed

	
exception autotest.client.shared.error.AutotestTimeoutError

	Bases: autotest.client.shared.error.AutotestError

This exception is raised when an autotest test exceeds the timeout
parameter passed to run_timed_test and is killed.

git Module

Code that helps to deal with content from git repositories

	
class autotest.client.shared.git.GitRepoHelper(uri, branch='master', lbranch=None, commit=None, destination_dir=None, base_uri=None)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Helps to deal with git repos, mostly fetching content from a repo

	
checkout(branch=None, commit=None)

	Performs a git checkout for a given branch and start point (commit)

	Parameters:	
	branch – Remote branch name.

	commit – Specific commit hash.

	
execute()

	Performs all steps necessary to initialize and download a git repo.

This includes the init, fetch and checkout steps in one single
utility method.

	
fetch(uri)

	Performs a git fetch from the remote repo

	
get_top_commit()

	Returns the topmost commit id for the current branch.

	Returns:	Commit id.

	
get_top_tag()

	Returns the topmost tag for the current branch.

	Returns:	Tag.

	
git_cmd(cmd, ignore_status=False)

	Wraps git commands.

	Parameters:	
	cmd – Command to be executed.

	ignore_status – Whether we should suppress error.CmdError
exceptions if the command did return exit code !=0 (True), or
not suppress them (False).

	
init()

	Initializes a directory for receiving a verbatim copy of git repo

This creates a directory if necessary, and either resets or inits
the repo

	
autotest.client.shared.git.get_repo(uri, branch='master', lbranch=None, commit=None, destination_dir=None, base_uri=None)

	Utility function that retrieves a given git code repository.

	Parameters:	
	uri (string [https://docs.python.org/2/library/string.html#module-string]) – git repository url

	branch (string [https://docs.python.org/2/library/string.html#module-string]) – git remote branch

	destination_dir (string [https://docs.python.org/2/library/string.html#module-string]) – path of a dir where to save downloaded code

	commit (string [https://docs.python.org/2/library/string.html#module-string]) – specific commit to download

	lbranch (string [https://docs.python.org/2/library/string.html#module-string]) – git local branch name, if different from remote

	uri – a closer, usually local, git repository url from where to
fetch content first from

host_protections Module

host_queue_entry_states Module

This module contains the status enums for use by HostQueueEntrys in the
database. It is a stand alone module as these status strings are needed
from various disconnected pieces of code that should not depend on everything
that autotest.frontend.afe.models depends on such as RPC clients.

iscsi Module

Basic iscsi support for Linux host with the help of commands
iscsiadm and tgtadm.

This include the basic operates such as login and get device name by
target name. And it can support the real iscsi access and emulated
iscsi in localhost then access it.

	
class autotest.client.shared.iscsi.Iscsi(params, root_dir='/tmp')

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Basic iscsi support class. Will handle the emulated iscsi export and
access to both real iscsi and emulated iscsi device.

	
cleanup()

	Clean up env after iscsi used.

	
delete_target()

	Delete target from host.

	
export_target()

	Export target in localhost for emulated iscsi

	
get_device_name()

	Get device name from the target name.

	
get_target_id()

	Get target id from image name. Only works for emulated iscsi device

	
logged_in()

	Check if the session is login or not.

	
login()

	Login session for both real iscsi device and emulated iscsi. Include
env check and setup.

	
logout()

	Logout from target.

	
portal_visible()

	Check if the portal can be found or not.

	
autotest.client.shared.iscsi.iscsi_discover(portal_ip)

	Query from iscsi server for available targets

	Parameters:	portal_ip – Ip for iscsi server

	
autotest.client.shared.iscsi.iscsi_get_nodes()

	Get the iscsi nodes

	
autotest.client.shared.iscsi.iscsi_get_sessions()

	Get the iscsi sessions activated

	
autotest.client.shared.iscsi.iscsi_login(target_name)

	Login to a target with the target name

	Parameters:	target_name – Name of the target

	
autotest.client.shared.iscsi.iscsi_logout(target_name=None)

	Logout from a target. If the target name is not set then logout all
targets.

	Params target_name:

	 	Name of the target.

iso9660 Module

Basic ISO9660 file-system support.

This code does not attempt (so far) to implement code that knows about
ISO9660 internal structure. Instead, it uses commonly available support
either in userspace tools or on the Linux kernel itself (via mount).

	
autotest.client.shared.iso9660.iso9660(path)

	Checks the avaiable tools on a system and chooses class accordingly

This is a convinience function, that will pick the first avaialable
iso9660 capable tool.

	Parameters:	path (str [https://docs.python.org/2/library/functions.html#str]) – path to an iso9660 image file

	Returns:	an instance of any iso9660 capable tool

	Return type:	Iso9660IsoInfo, Iso9660IsoRead, Iso9660Mount or None

	
class autotest.client.shared.iso9660.Iso9660IsoInfo(path)

	Bases: autotest.client.shared.iso9660.BaseIso9660

Represents a ISO9660 filesystem

This implementation is based on the cdrkit’s isoinfo tool

	
read(path)

	

	
class autotest.client.shared.iso9660.Iso9660IsoRead(path)

	Bases: autotest.client.shared.iso9660.BaseIso9660

Represents a ISO9660 filesystem

This implementation is based on the libcdio’s iso-read tool

	
close()

	

	
copy(src, dst)

	

	
read(path)

	

	
class autotest.client.shared.iso9660.Iso9660Mount(path)

	Bases: autotest.client.shared.iso9660.BaseIso9660

Represents a mounted ISO9660 filesystem.

	
close()

	Perform umount operation on the temporary dir

	Return type:	None [https://docs.python.org/2/library/constants.html#None]

	
copy(src, dst)

	

	Parameters:	
	src (str [https://docs.python.org/2/library/functions.html#str]) – source

	dst (str [https://docs.python.org/2/library/functions.html#str]) – destination

	Return type:	None [https://docs.python.org/2/library/constants.html#None]

	
read(path)

	Read data from path

	Parameters:	path (str [https://docs.python.org/2/library/functions.html#str]) – path to read data

	Returns:	data content

	Return type:	str [https://docs.python.org/2/library/functions.html#str]

jsontemplate Module

Python implementation of json-template.

JSON Template is a minimal and powerful templating language for transforming a
JSON dictionary to arbitrary text.

To use this module, you will typically use the Template constructor, and catch
various exceptions thrown. You may also want to use the FromFile/FromString
methods, which allow Template constructor options to be embedded in the template
string itself.

Other functions are exposed for tools which may want to process templates.

	
exception autotest.client.shared.jsontemplate.Error

	Bases: exceptions.Exception [https://docs.python.org/2/library/exceptions.html#exceptions.Exception]

Base class for all exceptions in this module.

Thus you can “except jsontemplate.Error: to catch all exceptions thrown by
this module.

	
exception autotest.client.shared.jsontemplate.CompilationError

	Bases: autotest.client.shared.jsontemplate.Error

Base class for errors that happen during the compilation stage.

	
exception autotest.client.shared.jsontemplate.EvaluationError(msg, original_exception=None)

	Bases: autotest.client.shared.jsontemplate.Error

Base class for errors that happen when expanding the template.

This class of errors generally involve the data dictionary or the execution of
the formatters.

	
exception autotest.client.shared.jsontemplate.BadFormatter

	Bases: autotest.client.shared.jsontemplate.CompilationError

A bad formatter was specified, e.g. {variable|BAD}

	
exception autotest.client.shared.jsontemplate.BadPredicate

	Bases: autotest.client.shared.jsontemplate.CompilationError

A bad predicate was specified, e.g. {.BAD?}

	
exception autotest.client.shared.jsontemplate.MissingFormatter

	Bases: autotest.client.shared.jsontemplate.CompilationError

Raised when formatters are required, and a variable is missing a formatter.

	
exception autotest.client.shared.jsontemplate.ConfigurationError

	Bases: autotest.client.shared.jsontemplate.CompilationError

Raised when the Template options are invalid and it can’t even be compiled.

	
exception autotest.client.shared.jsontemplate.TemplateSyntaxError

	Bases: autotest.client.shared.jsontemplate.CompilationError

Syntax error in the template text.

	
exception autotest.client.shared.jsontemplate.UndefinedVariable(msg, original_exception=None)

	Bases: autotest.client.shared.jsontemplate.EvaluationError

The template contains a variable not defined by the data dictionary.

	
autotest.client.shared.jsontemplate.CompileTemplate(template_str, builder=None, meta='{}', format_char='|', more_formatters=<function <lambda>>, more_predicates=<function <lambda>>, default_formatter='str')

	Compile the template string, calling methods on the ‘program builder’.

	Args:

	
	template_str: The template string. It should not have any compilation

	options in the header – those are parsed by FromString/FromFile

	builder: The interface of _ProgramBuilder isn’t fixed. Use at your own

	risk.

meta: The metacharacters to use, e.g. ‘{}’, ‘[]’.

	more_formatters:

	
	Something that can map format strings to formatter functions. One of:

	
	A plain dictionary of names -> functions e.g. {‘html’: cgi.escape}

	A higher-order function which takes format strings and returns
formatter functions. Useful for when formatters have parsed
arguments.

	A FunctionRegistry instance for the most control. This allows
formatters which takes contexts as well.

	more_predicates:

	Like more_formatters, but for predicates.

	default_formatter: The formatter to use for substitutions that are missing a

	formatter. The ‘str’ formatter the “default default” – it just tries
to convert the context value to a string in some unspecified manner.

	Returns:

	The compiled program (obtained from the builder)

	Raises:

	The various subclasses of CompilationError. For example, if
default_formatter=None, and a variable is missing a formatter, then
MissingFormatter is raised.

This function is public so it can be used by other tools, e.g. a syntax
checking tool run before submitting a template to source control.

	
autotest.client.shared.jsontemplate.FromString(s, more_formatters=<function <lambda>>, _constructor=None)

	Like FromFile, but takes a string.

	
autotest.client.shared.jsontemplate.FromFile(f, more_formatters=<function <lambda>>, _constructor=None)

	Parse a template from a file, using a simple file format.

This is useful when you want to include template options in a data file,
rather than in the source code.

The format is similar to HTTP or E-mail headers. The first lines of the file
can specify template options, such as the metacharacters to use. One blank
line must separate the options from the template body.

Example:

default-formatter: none
meta: {{}}
format-char: :
<blank line required>
Template goes here: {{variable:html}}

	Args:

	f: A file handle to read from. Caller is responsible for opening and
closing it.

	
class autotest.client.shared.jsontemplate.Template(template_str, builder=None, undefined_str=None, **compile_options)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Represents a compiled template.

Like many template systems, the template string is compiled into a program,
and then it can be expanded any number of times. For example, in a web app,
you can compile the templates once at server startup, and use the expand()
method at request handling time. expand() uses the compiled representation.

There are various options for controlling parsing – see CompileTemplate.
Don’t go crazy with metacharacters. {}, [], {{}} or <> should cover nearly
any circumstance, e.g. generating HTML, CSS XML, JavaScript, C programs, text
files, etc.

	
expand(*args, **kwargs)

	Expands the template with the given data dictionary, returning a string.

This is a small wrapper around render(), and is the most convenient
interface.

	Args:

	The JSON data dictionary. Like the builtin dict() constructor, it can
take a single dictionary as a positional argument, or arbitrary keyword
arguments.

	Returns:

	The return value could be a str() or unicode() instance, depending on the
the type of the template string passed in, and what the types the strings
in the dictionary are.

	
render(data_dict, callback)

	Low level method to expands the template piece by piece.

	Args:

	data_dict: The JSON data dictionary.
callback: A callback which should be called with each expanded token.

Example: You can pass ‘f.write’ as the callback to write directly to a file
handle.

	
tokenstream(data_dict)

	Yields a list of tokens resulting from expansion.

This may be useful for WSGI apps. NOTE: In the current implementation, the
entire expanded template must be stored memory.

NOTE: This is a generator, but JavaScript doesn’t have generators.

	
autotest.client.shared.jsontemplate.expand(template_str, dictionary, **kwargs)

	Free function to expands a template string with a data dictionary.

This is useful for cases where you don’t care about saving the result of
compilation (similar to re.match(‘.*’, s) vs DOT_STAR.match(s))

kernel_versions Module

	
autotest.client.shared.kernel_versions.is_release_candidate(version)

	

	
autotest.client.shared.kernel_versions.is_released_kernel(version)

	

	
autotest.client.shared.kernel_versions.version_choose_config(version, candidates)

	

	
autotest.client.shared.kernel_versions.version_encode(version)

	

	
autotest.client.shared.kernel_versions.version_len(version)

	

	
autotest.client.shared.kernel_versions.version_limit(version, n)

	

log Module

	
autotest.client.shared.log.is_failure(status)

	

	
autotest.client.shared.log.is_valid_status(status)

	

	
autotest.client.shared.log.log_and_ignore_errors(msg)

	A decorator for wrapping functions in a ‘log exception and ignore’
try-except block.

	
autotest.client.shared.log.record(fn)

	Generic method decorator for logging calls under the
assumption that return=GOOD, exception=FAIL. The method
determines parameters as:

subdir = self.subdir if it exists, or None
operation = “class name”.”method name”
status = None on GOOD, str(exception) on FAIL

The object using this method must have a job attribute
for the logging to actually occur, otherwise the logging
will silently fail.

Logging can explicitly be disabled for a call by passing
a logged=False parameter

logging_config Module

	
class autotest.client.shared.logging_config.AllowBelowSeverity(level)

	Bases: logging.Filter [https://docs.python.org/2/library/logging.html#logging.Filter]

Allows only records less severe than a given level (the opposite of what
the normal logging level filtering does.

	
filter(record)

	

	
class autotest.client.shared.logging_config.LoggingConfig(use_console=True)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	
add_console_handlers()

	

	
add_debug_file_handlers(log_dir, log_name=None)

	

	
add_file_handler(file_path, level=10, log_dir=None)

	

	
add_stream_handler(stream, level=10)

	

	
configure_logging(use_console=True, verbose=False)

	

	
console_formatter = <logging.Formatter object>

	

	
file_formatter = <logging.Formatter object>

	

	
classmethod get_autotest_root()

	

	
classmethod get_server_log_dir()

	

	
classmethod get_timestamped_log_name(base_name)

	

	
global_level = 10

	

	
stderr_level = 40

	

	
stdout_level = 20

	

	
class autotest.client.shared.logging_config.TestingConfig(use_console=True)

	Bases: autotest.client.shared.logging_config.LoggingConfig

	
add_file_handler(*args, **kwargs)

	

	
add_stream_handler(*args, **kwargs)

	

	
configure_logging(**kwargs)

	

logging_manager Module

	
class autotest.client.shared.logging_manager.FdRedirectionLoggingManager

	Bases: autotest.client.shared.logging_manager.LoggingManager

A simple extension of LoggingManager to use FdRedirectionStreamManagers,
so that managed streams have their underlying FDs redirected.

	
STREAM_MANAGER_CLASS

	alias of _FdRedirectionStreamManager

	
start_logging()

	

	
undo_redirect()

	

	
class autotest.client.shared.logging_manager.LoggingFile(prefix='', level=10, logger=<logging.RootLogger object>)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

File-like object that will receive messages pass them to the logging
infrastructure in an appropriate way.

	
flush()

	

	
isatty()

	

	
write(data)

	”
Writes data only if it constitutes a whole line. If it’s not the case,
store it in a buffer and wait until we have a complete line.
:param data - Raw data (a string) that will be processed.

	
writelines(lines)

	”
Writes itertable of lines

	Parameters:	lines – An iterable of strings that will be processed.

	
class autotest.client.shared.logging_manager.LoggingManager

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Manages a stack of logging configurations, allowing clients to conveniently
add and remove logging destinations. Also keeps a list of StreamManagers
to easily direct streams into the logging module.

	
STREAM_MANAGER_CLASS

	alias of _StreamManager

	
logging_config_object = None

	

	
manage_stderr()

	

	
manage_stdout()

	

	
manage_stream(stream, level, stream_setter)

	Tells this manager to manage the given stream. All data written to the
stream will be directed to the logging module instead. Must be called
before start_logging().

	Parameters:	
	stream – stream to manage

	level – level to log data written to this stream

	stream_setter – function to set the stream to a new object

	
redirect(filename)

	Redirect output to the specified file

	
redirect_to_stream(stream)

	Redirect output to the given stream

	
restore()

	Same as undo_redirect(). For backwards compatibility with
fd_stack.

	
start_logging()

	Begin capturing output to the logging module.

	
stop_logging()

	Restore output to its original state.

	
tee_redirect(filename, level=None)

	Tee output to the specified file

	
tee_redirect_debug_dir(debug_dir, log_name=None, tag=None)

	Tee output to a full new set of debug logs in the given directory.

	
tee_redirect_to_stream(stream)

	Tee output to the given stream

	
undo_redirect()

	Undo the last redirection (that hasn’t yet been undone).

If any subprocesses have been launched since the redirection was
performed, they must have ended by the time this is called. Otherwise,
this will hang waiting for the logging subprocess to end.

	
class autotest.client.shared.logging_manager.SortingLoggingFile(prefix='', level_list=[('ERROR', 40), ('WARN', 30), ('INFO', 20), ('DEBUG', 10)], logger=<logging.RootLogger object>)

	Bases: autotest.client.shared.logging_manager.LoggingFile

File-like object that will receive messages and pass them to the logging
infrastructure. It decides where to pass each line by applying a regex
to it and seeing which level it matched.

	
autotest.client.shared.logging_manager.configure_logging(logging_config, **kwargs)

	Configure the logging module using the specific configuration object, which
should be an instance of logging_config.LoggingConfig (usually of a
subclass). Any keyword args will be passed to the object’s
configure_logging() method.

Every entry point should call this method at application startup.

	
autotest.client.shared.logging_manager.do_not_report_as_logging_caller(func)

	Decorator to annotate functions we will tell logging not to log.

	
autotest.client.shared.logging_manager.get_logging_manager(manage_stdout_and_stderr=False, redirect_fds=False)

	Create a LoggingManager that’s managing sys.stdout and sys.stderr.

Every entry point that wants to capture stdout/stderr and/or use
LoggingManager to manage a stack of destinations should call this method
at application startup.

magic Module

Library used to determine a file MIME type by its magic number, it doesn’t have
any external dependencies. Based on work of Jason Petrone (jp_py@jsnp.net),
adapted to autotest.

	Command Line Usage: Running as ‘python magic.py file_path’ will print a

	mime string (or just a description) of the file present on file_path.

	API Usage:

	magic.guess_type(file_path) - Returns a description of what the file on
path ‘file’ contains. This function name was chosen due to a similar
function on python standard library ‘mimetypes’.

@license: GPL v2
:copyright: Jason Petrone (jp_py@jsnp.net) 2000
:copyright: Lucas Meneghel Rodrigues (lmr@redhat.com) 2010
@see: http://www.jsnp.net/code/magic.py

	
class autotest.client.shared.magic.MagicLoggingConfig(use_console=True)

	Bases: autotest.client.shared.logging_config.LoggingConfig

	
configure_logging(results_dir=None, verbose=False)

	

	
class autotest.client.shared.magic.MagicTest(offset, t, op, value, msg, mask=None)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Compile a magic database entry so it can be compared with data read from
files.

	
compare(data)

	Compare data read from the file with the expected data for this
particular mime type register.

	Parameters:	data – Data read from the file.

	
test(data)

	Compare data read from file with self.value if operator is ‘=’.

	Parameters:	data – Data read from the file.

	Returns:	None if no match between data and expected value string. Else,
print matching mime type information.

	
autotest.client.shared.magic.guess_type(filename)

	Guess the mimetype of a file based on its filename.

	Parameters:	filename – File name.

	Returns:	Mimetype string or description, when appropriate mime not
available.

mail Module

Notification email library.

Aims to replace a bunch of different email module wrappers previously used.

	
class autotest.client.shared.mail.EmailNotificationManager(module='scheduler')

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Email notification facility, for use in things like the autotest scheduler.

This facility can use values defined in the autotest settings
(global_config.ini) to conveniently send notification emails to the admin
of an autotest module.

	
enqueue_admin(subject, message)

	Enqueue an email to the test grid admin.

	
enqueue_exception_admin(reason)

	Enqueue an email containing an exception to the test grid admin.

	
send(to_string, subject, body)

	Send emails to the addresses listed in to_string.

	to_string is split into a list which can be delimited by any of:

	‘;’, ‘,’, ‘:’ or any whitespace

	
send_admin(subject, body)

	Send an email to this grid admin.

	
send_queued_admin()

	Send all queued emails to the test grid admin.

	
set_module(module)

	Change the name of the module we’re notifying for.

	
autotest.client.shared.mail.send(from_address, to_addresses, cc_addresses, subject, body, smtp_info, html=None)

	Send out an email.

	Args:

	from_address: The email address to put in the “From:” field.
to_addresses: Either a single string or an iterable of

strings to put in the “To:” field of the email.

	cc_addresses: Either a single string of an iterable of

	strings to put in the “Cc:” field of the email.

subject: The email subject.
body: The body of the email. there’s no special

handling of encoding here, so it’s safest to
stick to 7-bit ASCII text.

smtp_info: Dictionary with SMTP info.
html: Optional HTML content of the message.

mock Module

	
class autotest.client.shared.mock.Mock(spec=None, side_effect=None, return_value=sentinel.DEFAULT, wraps=None, name=None, spec_set=None, parent=None, _spec_state=None, _new_name='', _new_parent=None, **kwargs)

	Bases: autotest.client.shared.mock.CallableMixin, autotest.client.shared.mock.NonCallableMock

Create a new Mock object. Mock takes several optional arguments
that specify the behaviour of the Mock object:

	spec: This can be either a list of strings or an existing object (a
class or instance) that acts as the specification for the mock object. If
you pass in an object then a list of strings is formed by calling dir on
the object (excluding unsupported magic attributes and methods). Accessing
any attribute not in this list will raise an AttributeError.

If spec is an object (rather than a list of strings) then
mock.__class__ returns the class of the spec object. This allows mocks
to pass isinstance tests.

	spec_set: A stricter variant of spec. If used, attempting to set
or get an attribute on the mock that isn’t on the object passed as
spec_set will raise an AttributeError.

	side_effect: A function to be called whenever the Mock is called. See
the side_effect attribute. Useful for raising exceptions or
dynamically changing return values. The function is called with the same
arguments as the mock, and unless it returns DEFAULT, the return
value of this function is used as the return value.

Alternatively side_effect can be an exception class or instance. In
this case the exception will be raised when the mock is called.

If side_effect is an iterable then each call to the mock will return
the next value from the iterable. If any of the members of the iterable
are exceptions they will be raised instead of returned.

	return_value: The value returned when the mock is called. By default
this is a new Mock (created on first access). See the
return_value attribute.

	wraps: Item for the mock object to wrap. If wraps is not None then
calling the Mock will pass the call through to the wrapped object
(returning the real result). Attribute access on the mock will return a
Mock object that wraps the corresponding attribute of the wrapped object
(so attempting to access an attribute that doesn’t exist will raise an
AttributeError).

If the mock has an explicit return_value set then calls are not passed
to the wrapped object and the return_value is returned instead.

	name: If the mock has a name then it will be used in the repr of the
mock. This can be useful for debugging. The name is propagated to child
mocks.

Mocks can also be called with arbitrary keyword arguments. These will be
used to set attributes on the mock after it is created.

	
class autotest.client.shared.mock.MagicMock(*args, **kw)

	Bases: autotest.client.shared.mock.MagicMixin, autotest.client.shared.mock.Mock

MagicMock is a subclass of Mock with default implementations
of most of the magic methods. You can use MagicMock without having to
configure the magic methods yourself.

If you use the spec or spec_set arguments then only magic
methods that exist in the spec will be created.

Attributes and the return value of a MagicMock will also be MagicMocks.

	
mock_add_spec(spec, spec_set=False)

	Add a spec to a mock. spec can either be an object or a
list of strings. Only attributes on the spec can be fetched as
attributes from the mock.

If spec_set is True then only attributes on the spec can be set.

	
autotest.client.shared.mock.patch(target, new=sentinel.DEFAULT, spec=None, create=False, spec_set=None, autospec=None, new_callable=None, **kwargs)

	patch acts as a function decorator, class decorator or a context
manager. Inside the body of the function or with statement, the target
is patched with a new object. When the function/with statement exits
the patch is undone.

If new is omitted, then the target is replaced with a
MagicMock. If patch is used as a decorator and new is
omitted, the created mock is passed in as an extra argument to the
decorated function. If patch is used as a context manager the created
mock is returned by the context manager.

target should be a string in the form ‘package.module.ClassName’. The
target is imported and the specified object replaced with the new
object, so the target must be importable from the environment you are
calling patch from. The target is imported when the decorated function
is executed, not at decoration time.

The spec and spec_set keyword arguments are passed to the MagicMock
if patch is creating one for you.

In addition you can pass spec=True or spec_set=True, which causes
patch to pass in the object being mocked as the spec/spec_set object.

new_callable allows you to specify a different class, or callable object,
that will be called to create the new object. By default MagicMock is
used.

A more powerful form of spec is autospec. If you set autospec=True
then the mock with be created with a spec from the object being replaced.
All attributes of the mock will also have the spec of the corresponding
attribute of the object being replaced. Methods and functions being
mocked will have their arguments checked and will raise a TypeError if
they are called with the wrong signature. For mocks replacing a class,
their return value (the ‘instance’) will have the same spec as the class.

Instead of autospec=True you can pass autospec=some_object to use an
arbitrary object as the spec instead of the one being replaced.

By default patch will fail to replace attributes that don’t exist. If
you pass in create=True, and the attribute doesn’t exist, patch will
create the attribute for you when the patched function is called, and
delete it again afterwards. This is useful for writing tests against
attributes that your production code creates at runtime. It is off by by
default because it can be dangerous. With it switched on you can write
passing tests against APIs that don’t actually exist!

Patch can be used as a TestCase class decorator. It works by
decorating each test method in the class. This reduces the boilerplate
code when your test methods share a common patchings set. patch finds
tests by looking for method names that start with patch.TEST_PREFIX.
By default this is test, which matches the way unittest finds tests.
You can specify an alternative prefix by setting patch.TEST_PREFIX.

Patch can be used as a context manager, with the with statement. Here the
patching applies to the indented block after the with statement. If you
use “as” then the patched object will be bound to the name after the
“as”; very useful if patch is creating a mock object for you.

patch takes arbitrary keyword arguments. These will be passed to
the Mock (or new_callable) on construction.

patch.dict(...), patch.multiple(...) and patch.object(...) are
available for alternate use-cases.

	
autotest.client.shared.mock.call

	A tuple for holding the results of a call to a mock, either in the form
(args, kwargs) or (name, args, kwargs).

If args or kwargs are empty then a call tuple will compare equal to
a tuple without those values. This makes comparisons less verbose:

_Call(('name', (), {})) == ('name',)
_Call(('name', (1,), {})) == ('name', (1,))
_Call(((), {'a': 'b'})) == ({'a': 'b'},)

The _Call object provides a useful shortcut for comparing with call:

_Call(((1, 2), {'a': 3})) == call(1, 2, a=3)
_Call(('foo', (1, 2), {'a': 3})) == call.foo(1, 2, a=3)

If the _Call has no name then it will match any name.

	
autotest.client.shared.mock.create_autospec(spec, spec_set=False, instance=False, _parent=None, _name=None, **kwargs)

	Create a mock object using another object as a spec. Attributes on the
mock will use the corresponding attribute on the spec object as their
spec.

Functions or methods being mocked will have their arguments checked
to check that they are called with the correct signature.

If spec_set is True then attempting to set attributes that don’t exist
on the spec object will raise an AttributeError.

If a class is used as a spec then the return value of the mock (the
instance of the class) will have the same spec. You can use a class as the
spec for an instance object by passing instance=True. The returned mock
will only be callable if instances of the mock are callable.

create_autospec also takes arbitrary keyword arguments that are passed to
the constructor of the created mock.

	
class autotest.client.shared.mock.NonCallableMock(spec=None, wraps=None, name=None, spec_set=None, parent=None, _spec_state=None, _new_name='', _new_parent=None, **kwargs)

	Bases: autotest.client.shared.mock.Base

A non-callable version of Mock

	
assert_any_call(*args, **kwargs)

	assert the mock has been called with the specified arguments.

The assert passes if the mock has ever been called, unlike
assert_called_with and assert_called_once_with that only pass if
the call is the most recent one.

	
assert_called_once_with(_mock_self, *args, **kwargs)

	assert that the mock was called exactly once and with the specified
arguments.

	
assert_called_with(_mock_self, *args, **kwargs)

	assert that the mock was called with the specified arguments.

Raises an AssertionError if the args and keyword args passed in are
different to the last call to the mock.

	
assert_has_calls(calls, any_order=False)

	assert the mock has been called with the specified calls.
The mock_calls list is checked for the calls.

If any_order is False (the default) then the calls must be
sequential. There can be extra calls before or after the
specified calls.

If any_order is True then the calls can be in any order, but
they must all appear in mock_calls.

	
attach_mock(mock, attribute)

	Attach a mock as an attribute of this one, replacing its name and
parent. Calls to the attached mock will be recorded in the
method_calls and mock_calls attributes of this one.

	
call_args

	

	
call_args_list

	

	
call_count

	

	
called

	

	
configure_mock(**kwargs)

	Set attributes on the mock through keyword arguments.

Attributes plus return values and side effects can be set on child
mocks using standard dot notation and unpacking a dictionary in the
method call:

>>> attrs = {'method.return_value': 3, 'other.side_effect': KeyError}
>>> mock.configure_mock(**attrs)

	
mock_add_spec(spec, spec_set=False)

	Add a spec to a mock. spec can either be an object or a
list of strings. Only attributes on the spec can be fetched as
attributes from the mock.

If spec_set is True then only attributes on the spec can be set.

	
mock_calls

	

	
reset_mock()

	Restore the mock object to its initial state.

	
return_value

	

	
side_effect

	

	
class autotest.client.shared.mock.NonCallableMagicMock(*args, **kw)

	Bases: autotest.client.shared.mock.MagicMixin, autotest.client.shared.mock.NonCallableMock

A version of MagicMock that isn’t callable.

	
mock_add_spec(spec, spec_set=False)

	Add a spec to a mock. spec can either be an object or a
list of strings. Only attributes on the spec can be fetched as
attributes from the mock.

If spec_set is True then only attributes on the spec can be set.

	
autotest.client.shared.mock.mock_open(mock=None, read_data='')

	A helper function to create a mock to replace the use of open. It works
for open called directly or used as a context manager.

The mock argument is the mock object to configure. If None (the
default) then a MagicMock will be created for you, with the API limited
to methods or attributes available on standard file handles.

read_data is a string for the read method of the file handle to return.
This is an empty string by default.

	
class autotest.client.shared.mock.PropertyMock(spec=None, side_effect=None, return_value=sentinel.DEFAULT, wraps=None, name=None, spec_set=None, parent=None, _spec_state=None, _new_name='', _new_parent=None, **kwargs)

	Bases: autotest.client.shared.mock.Mock

A mock intended to be used as a property, or other descriptor, on a class.
PropertyMock provides __get__ and __set__ methods so you can specify
a return value when it is fetched.

Fetching a PropertyMock instance from an object calls the mock, with
no args. Setting it calls the mock with the value being set.

openvswitch Module

	
class autotest.client.shared.openvswitch.OpenVSwitch(tmpdir, db_path=None, db_socket=None, db_pidfile=None, ovs_pidfile=None, dbschema=None, install_prefix=None)

	Bases: autotest.client.shared.openvswitch.OpenVSwitchSystem

OpenVSwtich class.

	
clean()

	

	
init_db()

	

	
init_new()

	Create new dbfile without any configuration.

	
start_ovs_vswitchd()

	

	
class autotest.client.shared.openvswitch.OpenVSwitchControl

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Class select the best matches control class for installed version
of OpenVSwitch.

OpenVSwtich parameters are described in man ovs-vswitchd.conf.db

	
add_br(br_name)

	

	
add_port(br_name, port_name)

	

	
add_port_tag(port_name, tag)

	

	
add_port_trunk(port_name, trunk)

	

	
br_exist(br_name)

	

	
check_port_in_br(br_name, port_name)

	

	
static convert_version_to_int(version)

	

	Parameters:	version – (int) Converted from version string 1.4.0 => int 140

	
del_br(br_name)

	

	
del_port(br_name, port_name)

	

	
classmethod get_version()

	Get version of installed OpenVSwtich.

	Returns:	Version of OpenVSwtich.

	
list_br()

	

	
set_vlanmode(port_name, vlan_mode)

	

	
status()

	

	
class autotest.client.shared.openvswitch.OpenVSwitchControlCli

	Bases: autotest.client.shared.openvswitch.OpenVSwitchControl, autotest.client.shared.utils.VersionableClass

Class select the best matches control class for installed version
of OpenVSwitch.

	
class autotest.client.shared.openvswitch.OpenVSwitchControlCli_140

	Bases: autotest.client.shared.openvswitch.OpenVSwitchControlCli, autotest.client.shared.utils.VersionableClass

Don’t use this class directly. This class is automatically selected by
OpenVSwitchControl.

	
add_br(br_name)

	

	
add_fake_br(br_name, parent, vlan)

	

	
add_port(br_name, port_name)

	

	
add_port_tag(port_name, tag)

	

	
add_port_trunk(port_name, trunk)

	

	Parameters:	trunk – list of vlans id.

	
br_exist(br_name)

	

	
del_br(br_name)

	

	
del_port(br_name, port_name)

	

	
classmethod is_right_version(version)

	Check condition for select control class.

	Parameters:	version – version of OpenVSwtich

	
list_br()

	

	
list_ports(br_name)

	

	
ovs_vsctl(parmas, ignore_status=False)

	

	
port_to_br(port_name)

	Return bridge which contain port.

	Parameters:	port_name – Name of port.

	Returns:	Bridge name or None if there is no bridge which contain port.

	
set_vlanmode(port_name, vlan_mode)

	

	
status()

	

	
class autotest.client.shared.openvswitch.OpenVSwitchControlDB

	Bases: autotest.client.shared.openvswitch.OpenVSwitchControl, autotest.client.shared.utils.VersionableClass

Class select the best matches control class for installed version
of OpenVSwitch.

	
class autotest.client.shared.openvswitch.OpenVSwitchControlDB_140

	Bases: autotest.client.shared.openvswitch.OpenVSwitchControlDB, autotest.client.shared.utils.VersionableClass

Don’t use this class directly. This class is automatically selected by
OpenVSwitchControl.

	
classmethod is_right_version(version)

	Check condition for select control class.

	Parameters:	version – version of OpenVSwtich

	
class autotest.client.shared.openvswitch.OpenVSwitchSystem(db_path=None, db_socket=None, db_pidfile=None, ovs_pidfile=None, dbschema=None, install_prefix=None)

	Bases: autotest.client.shared.openvswitch.OpenVSwitchControlCli, autotest.client.shared.openvswitch.OpenVSwitchControlDB

OpenVSwtich class.

	
check()

	

	
check_db_daemon()

	Check if OVS daemon is started correctly.

	
check_db_file()

	Check if db_file exists.

	
check_db_socket()

	Check if db socket exists.

	
check_switch_daemon()

	Check if OVS daemon is started correctly.

	
clean()

	Empty cleanup function

	
init_system()

	Create new dbfile without any configuration.

	
is_installed()

	Check if OpenVSwitch is already installed in system on default places.

	Returns:	Version of OpenVSwtich.

	
class autotest.client.shared.openvswitch.ServiceManager

	Bases: autotest.client.shared.openvswitch.ServiceManagerInterface

	
class autotest.client.shared.openvswitch.ServiceManagerInterface

	Bases: autotest.client.shared.utils.VersionableClass

	
classmethod get_version()

	Get version of ServiceManager.
:return: Version of ServiceManager.

	
restart(service_name)

	

	
start(service_name)

	

	
status(service_name)

	

	
stop(service_name)

	

	
class autotest.client.shared.openvswitch.ServiceManagerSystemD

	Bases: autotest.client.shared.openvswitch.ServiceManagerInterface, autotest.client.shared.utils.VersionableClass

	
classmethod is_right_version(version)

	

	
restart(service_name)

	

	
start(service_name)

	

	
status(service_name)

	

	
stop(service_name)

	

	
class autotest.client.shared.openvswitch.ServiceManagerSysvinit

	Bases: autotest.client.shared.openvswitch.ServiceManagerInterface, autotest.client.shared.utils.VersionableClass

	
classmethod is_right_version(version)

	

	
restart(service_name)

	

	
start(service_name)

	

	
stop(service_name)

	

packages Module

	
class autotest.client.shared.packages.PackageManager(pkgmgr_dir, hostname=None, repo_urls=None, upload_paths=None, do_locking=True, run_function=<function run>, run_function_args=[], run_function_dargs={})

	Bases: autotest.client.shared.base_packages.BasePackageManager

pidfile Module

	
class autotest.client.shared.pidfile.PidFileManager(label, results_dir)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	
close_file(exit_code, signal_code=0)

	

	
open_file()

	

profiler_manager Module

	
exception autotest.client.shared.profiler_manager.ProfilerNotPresentError(name, *args, **dargs)

	Bases: autotest.client.shared.error.JobError

	
class autotest.client.shared.profiler_manager.profiler_manager(job)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	
active()

	Returns True if profilers are present and started, False
otherwise

	
add(profiler, *args, **dargs)

	Add a profiler

	
before_start(test)

	Override to do any setup needed before actually starting the profilers
(this function is called before calling test.before_run_once() and
profilers.start() in a profiled run).

	
current_profilers()

	Returns a set of the currently enabled profilers

	
delete(profiler)

	Remove a profiler

	
load_profiler(profiler, args, dargs)

	Given a name and args, loads a profiler, initializes it
with the required arguments, and returns an instance of it. Raises
a ProfilerNotPresentError if the module isn’t found.

	
only()

	Returns True if job is supposed to be run only with profiling
turned on, False otherwise

	
present()

	Indicates if any profilers are enabled

	
report(test)

	Report on all enabled profilers

	
set_only(value)

	Changes the flag which determines whether or not the job is to be
run without profilers at all

	
start(test)

	Start all enabled profilers

	
stop(test)

	Stop all enabled profilers

progressbar Module

Basic text progress bar without fancy curses features

	
class autotest.client.shared.progressbar.ProgressBar(minimum=0, maximum=100, width=77, title='')

	Displays interactively the progress of a given task

Inspired/adapted from code.activestate.com recipe #168639

	
DEFAULT_WIDTH = 77

	

	
get_screen_text()

	Builds the actual progress bar text

	
increment(increment, update_screen=True)

	Increments the current amount value

	
update(amount, update_screen=True)

	Performs sanity checks and update the current amount

	
update_screen()

	Prints the updated text to the screen

report Module

Module used to parse the autotest job status file and generate a JSON file.

Optionally, we can also generate reports (HTML)

	
exception autotest.client.shared.report.InvalidAutotestResultDirError(directory)

	Bases: exceptions.Exception [https://docs.python.org/2/library/exceptions.html#exceptions.Exception]

	
exception autotest.client.shared.report.InvalidOutputDirError(directory)

	Bases: exceptions.Exception [https://docs.python.org/2/library/exceptions.html#exceptions.Exception]

	
class autotest.client.shared.report.ReportLoggingConfig(use_console=True)

	Bases: autotest.client.shared.logging_config.LoggingConfig

Used with the sole purpose of providing convenient logging setup
for this program.

	
configure_logging(results_dir=None, verbose=False)

	

	
class autotest.client.shared.report.ReportOptionParser

	Bases: optparse.OptionParser [https://docs.python.org/2/library/optparse.html#optparse.OptionParser]

	
autotest.client.shared.report.generate_html_report(results_dir, relative_links=True)

	Render a job report HTML.

All CSS and javascript are inlined, for more convenience.

	Parameters:	results_dir – Path to the results directory.

	
autotest.client.shared.report.generate_json_file(results_dir, relative_links=True)

	Generate a JSON file with autotest job summary on a given results directory

	Parameters:	results_dir – Path to the results directory.

	
autotest.client.shared.report.get_info_file(filename)

	Gets the contents of an autotest info file.

It also and highlights the file contents with possible problems.

	Parameters:	filename – Info file path.

	
autotest.client.shared.report.parse_results_dir(results_dir, relative_links=True)

	Parse a top level status file and produce a dictionary with job data.

	Parameters:	dirname – Autotest results directory path

	Returns:	Dictionary with job data.

	
autotest.client.shared.report.write_html_report(results_dir, report_path=None, encoding='utf8')

	Write an HTML file at report_path, with job data summary.

If no report_path specified, generate one at results_dir/job_report.html.

	Parameters:	
	results_dir – Directory with test results.

	report_path – Path to a report file (optional).

	encoding – Encoding for output (optional).

service Module

	
autotest.client.shared.service.ServiceManager(run=<function run>)

	Detect which init program is being used, init or systemd and return a
class has methods to start/stop services.

Get the system service manager
service_manager = ServiceManager()

Stating service/unit “sshd”
service_manager.start(“sshd”)

Getting a list of available units
units = service_manager.list()

Disabling and stopping a list of services
services_to_disable = [‘ntpd’, ‘httpd’]
for s in services_to_disable:

service_manager.disable(s)
service_manager.stop(s)

	Returns:	SysVInitServiceManager or SystemdServiceManager

	Return type:	_GenericServiceManager

	
autotest.client.shared.service.SpecificServiceManager(service_name, run=<function run>)

	# Get the specific service manager for sshd
sshd = SpecificServiceManager(“sshd”)
sshd.start()
sshd.stop()
sshd.reload()
sshd.restart()
sshd.condrestart()
sshd.status()
sshd.enable()
sshd.disable()
sshd.is_enabled()

	Parameters:	service_name (str [https://docs.python.org/2/library/functions.html#str]) – systemd unit or init.d service to manager

	Returns:	SpecificServiceManager that has start/stop methods

	Return type:	_SpecificServiceManager

	
autotest.client.shared.service.convert_systemd_target_to_runlevel(target)

	Convert systemd target to runlevel.

	Parameters:	target (str [https://docs.python.org/2/library/functions.html#str]) – systemd target

	Returns:	sys_v runlevel

	Return type:	str [https://docs.python.org/2/library/functions.html#str]

	Raises:	ValueError – when systemd target is unknown

	
autotest.client.shared.service.convert_sysv_runlevel(level)

	Convert runlevel to systemd target.

	Parameters:	level (str [https://docs.python.org/2/library/functions.html#str] or int [https://docs.python.org/2/library/functions.html#int]) – sys_v runlevel

	Returns:	systemd target

	Return type:	str [https://docs.python.org/2/library/functions.html#str]

	Raises:	ValueError – when runlevel is unknown

	
autotest.client.shared.service.get_name_of_init(run=<function run>)

	Determine what executable is PID 1, aka init by checking /proc/1/exe
This init detection will only run once and cache the return value.

	Returns:	executable name for PID 1, aka init

	Return type:	str [https://docs.python.org/2/library/functions.html#str]

	
autotest.client.shared.service.sys_v_init_command_generator(command)

	Generate lists of command arguments for sys_v style inits.

	Parameters:	command (str [https://docs.python.org/2/library/functions.html#str]) – start,stop,restart, etc.

	Returns:	list of commands to pass to utils.run or similar function

	Return type:	list

	
autotest.client.shared.service.sys_v_init_result_parser(command)

	Parse results from sys_v style commands.

	Parameters:	command (str.) – command.

	Returns:	different from the command.

command is status: return true if service is running.
command is is_enabled: return true if service is enalbled.
command is list: return a dict from service name to status.
command is others: return true if operate success.

	
autotest.client.shared.service.systemd_command_generator(command)

	Generate list of command line argument strings for systemctl.
One argument per string for compatibility Popen

WARNING: If systemctl detects that it is running on a tty it will use color,
pipe to $PAGER, change column sizes and not truncate unit names.
Use –no-pager to suppress pager output, or set PAGER=cat in the environment.
You may need to take other steps to suppress color output.
See https://bugzilla.redhat.com/show_bug.cgi?id=713567

	Parameters:	command (str [https://docs.python.org/2/library/functions.html#str]) – start,stop,restart, etc.

	Returns:	list of command and arguments to pass to utils.run or similar functions

	Return type:	list

	
autotest.client.shared.service.systemd_result_parser(command)

	Parse results from systemd style commands.

	Parameters:	command (str.) – command.

	Returns:	different from the command.

command is status: return true if service is running.
command is is_enabled: return true if service is enalbled.
command is list: return a dict from service name to status.
command is others: return true if operate success.

settings Module

A singleton class for accessing global config values.

provides access to global configuration file.

	
class autotest.client.shared.settings.Settings

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	
check_stand_alone_client_run()

	

	
config = None

	

	
config_file = '/home/docs/checkouts/readthedocs.org/user_builds/autotest/checkouts/stable/global_config.ini'

	

	
get_section_values(sections)

	Return a config parser object containing a single section of the
global configuration, that can be later written to a file object.

	Parameters:	section – Tuple with sections we want to turn into a config parser
object.

	Returns:	ConfigParser() object containing all the contents of sections.

	
get_value(section, key, type=<type 'str'>, default=<object object>, allow_blank=False)

	

	
merge_configs(shadow_config)

	

	
override_value(section, key, new_value)

	Override a value from the config file with a new value.

	
parse_config_file()

	

	
reset_values()

	Reset all values to those found in the config files (undoes all
overrides).

	
running_stand_alone_client = False

	

	
set_config_files(config_file='/home/docs/checkouts/readthedocs.org/user_builds/autotest/checkouts/stable/global_config.ini', shadow_file='/home/docs/checkouts/readthedocs.org/user_builds/autotest/checkouts/stable/shadow_config.ini')

	

	
shadow_file = '/home/docs/checkouts/readthedocs.org/user_builds/autotest/checkouts/stable/shadow_config.ini'

	

	
exception autotest.client.shared.settings.SettingsError

	Bases: autotest.client.shared.error.AutotestError

	
exception autotest.client.shared.settings.SettingsValueError

	Bases: autotest.client.shared.settings.SettingsError

software_manager Module

Software package management library.

This is an abstraction layer on top of the existing distributions high level
package managers. It supports package operations useful for testing purposes,
and multiple high level package managers (here called backends). If you want
to make this lib to support your particular package manager/distro, please
implement the given backend class.

	author:	Higor Vieira Alves (halves@br.ibm.com)

	author:	Lucas Meneghel Rodrigues (lmr@redhat.com)

	author:	Ramon de Carvalho Valle (rcvalle@br.ibm.com)

	copyright:	IBM 2008-2009

	copyright:	Red Hat 2009-2010

	
class autotest.client.shared.software_manager.AptBackend

	Bases: autotest.client.shared.software_manager.DpkgBackend

Implements the apt backend for software manager.

Set of operations for the apt package manager, commonly found on Debian and
Debian based distributions, such as Ubuntu Linux.

	
add_repo(repo)

	Add an apt repository.

	Parameters:	repo – Repository string. Example:
‘deb http://archive.ubuntu.com/ubuntu/ maverick universe’

	
install(name)

	Installs package [name].

	Parameters:	name – Package name.

	
provides(path)

	Return a list of packages that provide [path].

	Parameters:	path – File path.

	
remove(name)

	Remove package [name].

	Parameters:	name – Package name.

	
remove_repo(repo)

	Remove an apt repository.

	Parameters:	repo – Repository string. Example:
‘deb http://archive.ubuntu.com/ubuntu/ maverick universe’

	
upgrade(name=None)

	Upgrade all packages of the system with eventual new versions.

Optionally, upgrade individual packages.

	Parameters:	name (str [https://docs.python.org/2/library/functions.html#str]) – optional parameter wildcard spec to upgrade

	
class autotest.client.shared.software_manager.BaseBackend

	Bases: object [https://docs.python.org/2/library/functions.html#object]

This class implements all common methods among backends.

	
install_what_provides(path)

	Installs package that provides [path].

	Parameters:	path – Path to file.

	
class autotest.client.shared.software_manager.DpkgBackend

	Bases: autotest.client.shared.software_manager.BaseBackend

This class implements operations executed with the dpkg package manager.

dpkg is a lower level package manager, used by higher level managers such
as apt and aptitude.

	
INSTALLED_OUTPUT = 'install ok installed'

	

	
PACKAGE_TYPE = 'deb'

	

	
check_installed(name)

	

	
list_all()

	List all packages available in the system.

	
list_files(package)

	List files installed by package [package].

	Parameters:	package – Package name.

	Returns:	List of paths installed by package.

	
class autotest.client.shared.software_manager.RpmBackend

	Bases: autotest.client.shared.software_manager.BaseBackend

This class implements operations executed with the rpm package manager.

rpm is a lower level package manager, used by higher level managers such
as yum and zypper.

	
PACKAGE_TYPE = 'rpm'

	

	
SOFTWARE_COMPONENT_QRY = 'rpm %{NAME} %{VERSION} %{RELEASE} %{SIGMD5} %{ARCH}'

	

	
check_installed(name, version=None, arch=None)

	Check if package [name] is installed.

	Parameters:	
	name – Package name.

	version – Package version.

	arch – Package architecture.

	
list_all(software_components=True)

	List all installed packages.

	Parameters:	software_components – log in a format suitable for the
SoftwareComponent schema

	
list_files(name)

	List files installed on the system by package [name].

	Parameters:	name – Package name.

	
class autotest.client.shared.software_manager.SoftwareManager

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Package management abstraction layer.

It supports a set of common package operations for testing purposes, and it
uses the concept of a backend, a helper class that implements the set of
operations of a given package management tool.

	
class autotest.client.shared.software_manager.SoftwareManagerLoggingConfig(use_console=True)

	Bases: autotest.client.shared.logging_config.LoggingConfig

Used with the sole purpose of providing logging setup for this program.

	
configure_logging(results_dir=None, verbose=False)

	

	
class autotest.client.shared.software_manager.SystemInspector

	Bases: object [https://docs.python.org/2/library/functions.html#object]

System inspector class.

This may grow up to include more complete reports of operating system and
machine properties.

	
get_package_management()

	Determine the supported package management systems present on the
system. If more than one package management system installed, try
to find the best supported system.

	
class autotest.client.shared.software_manager.YumBackend

	Bases: autotest.client.shared.software_manager.RpmBackend

Implements the yum backend for software manager.

Set of operations for the yum package manager, commonly found on Yellow Dog
Linux and Red Hat based distributions, such as Fedora and Red Hat
Enterprise Linux.

	
add_repo(url)

	Adds package repository located on [url].

	Parameters:	url – Universal Resource Locator of the repository.

	
install(name)

	Installs package [name]. Handles local installs.

	
provides(name)

	Returns a list of packages that provides a given capability.

	Parameters:	name – Capability name (eg, ‘foo’).

	
remove(name)

	Removes package [name].

	Parameters:	name – Package name (eg. ‘ipython’).

	
remove_repo(url)

	Removes package repository located on [url].

	Parameters:	url – Universal Resource Locator of the repository.

	
upgrade(name=None)

	Upgrade all available packages.

Optionally, upgrade individual packages.

	Parameters:	name (str [https://docs.python.org/2/library/functions.html#str]) – optional parameter wildcard spec to upgrade

	
class autotest.client.shared.software_manager.ZypperBackend

	Bases: autotest.client.shared.software_manager.RpmBackend

Implements the zypper backend for software manager.

Set of operations for the zypper package manager, found on SUSE Linux.

	
add_repo(url)

	Adds repository [url].

	Parameters:	url – URL for the package repository.

	
install(name)

	Installs package [name]. Handles local installs.

	Parameters:	name – Package Name.

	
provides(name)

	Searches for what provides a given file.

	Parameters:	name – File path.

	
remove(name)

	Removes package [name].

	
remove_repo(url)

	Removes repository [url].

	Parameters:	url – URL for the package repository.

	
upgrade(name=None)

	Upgrades all packages of the system.

Optionally, upgrade individual packages.

	Parameters:	name (str [https://docs.python.org/2/library/functions.html#str]) – Optional parameter wildcard spec to upgrade

	
autotest.client.shared.software_manager.install_distro_packages(distro_pkg_map, interactive=False)

	Installs packages for the currently running distribution

This utility function checks if the currently running distro is a
key in the distro_pkg_map dictionary, and if there is a list of packages
set as its value.

If these conditions match, the packages will be installed using the
software manager interface, thus the native packaging system if the
currenlty running distro.

	Parameters:	distro_pkg_map (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – mapping of distro name, as returned by
utils.get_os_vendor(), to a list of package names

	Returns:	True if any packages were actually installed, False otherwise

ssh_key Module

syncdata Module

test [https://docs.python.org/2/library/test.html#module-test] Module

	
class autotest.client.shared.test.Subtest

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Collect result of subtest of main test.

	
clean()

	Check if cleanup is defined.

For makes test fatal add before implementation of test method
decorator @subtest_nocleanup

	
decored()

	

	
failed = 0

	

	
classmethod get_full_text_result(format_func=None)

	

	Returns:	string with text form of result

	
classmethod get_result()

	

	Returns:	Result of subtests.
Format:
tuple(pass/fail,function_name,call_arguments)

	
classmethod get_text_result(format_func=None)

	

	Returns:	string with text form of result

	
classmethod has_failed()

	

	Returns:	If any of subtest not pass return True.

	
classmethod log_append(msg)

	Add log_append to result output.

	Parameters:	msg – Test of log_append

	
passed = 0

	

	
result = []

	

	
static result_to_string(result)

	Format of result dict.

	result = {

	
‘result’ : “PASS” / “FAIL”,
‘name’ : class name,
‘args’ : test’s args,
‘kargs’ : test’s kargs,
‘output’ : return of test function,

}

	Parameters:	result – Result of test.

	
static result_to_string_debug(result)

	

	Parameters:	result – Result of test.

	
runsubtest(url, *args, **dargs)

	Execute another autotest test from inside the current test’s scope.

	Parameters:	
	test – Parent test.

	url – Url of new test.

	tag – Tag added to test name.

	args – Args for subtest.

	dargs – Dictionary with args for subtest.

@iterations: Number of subtest iterations.
@profile_only: If true execute one profiled run.

	
test()

	Check if test is defined.

For makes test fatal add before implementation of test method
decorator @subtest_fatal

	
class autotest.client.shared.test.base_test(job, bindir, outputdir)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	
after_run_once()

	Called after every run_once (including from a profiled run when it’s
called after stopping the profilers).

	
analyze_perf_constraints(constraints)

	

	
assert_(expr, msg='Assertion failed.')

	

	
before_run_once()

	Override in tests that need it, will be called before any run_once()
call including the profiling run (when it’s called before starting
the profilers).

	
cleanup()

	

	
configure_crash_handler()

	

	
crash_handler_report()

	

	
drop_caches_between_iterations()

	

	
execute(iterations=None, test_length=None, profile_only=None, _get_time=<built-in function time>, postprocess_profiled_run=None, constraints=(), *args, **dargs)

	This is the basic execute method for the tests inherited from base_test.
If you want to implement a benchmark test, it’s better to implement
the run_once function, to cope with the profiling infrastructure. For
other tests, you can just override the default implementation.

	Parameters:	
	test_length – The minimum test length in seconds. We’ll run the
run_once function for a number of times large enough to cover the
minimum test length.

	iterations – A number of iterations that we’ll run the run_once
function. This parameter is incompatible with test_length and will
be silently ignored if you specify both.

	profile_only – If true run X iterations with profilers enabled.
If false run X iterations and one with profiling if profiles are
enabled. If None, default to the value of job.default_profile_only.

	_get_time – [time.time] Used for unit test time injection.

	postprocess_profiled_run – Run the postprocessing for the
profiled run.

	
initialize()

	

	
network_destabilizing = False

	

	
postprocess()

	

	
postprocess_iteration()

	

	
preserve_srcdir = False

	

	
process_failed_constraints()

	

	
register_after_iteration_hook(iteration_hook)

	This is how we expect test writers to register an after_iteration_hook.
This adds the method to the list of hooks which are executed
after each iteration.

	Parameters:	iteration_hook – Method to run after each iteration. A valid
hook accepts a single argument which is the
test object.

	
register_before_iteration_hook(iteration_hook)

	This is how we expect test writers to register a before_iteration_hook.
This adds the method to the list of hooks which are executed
before each iteration.

	Parameters:	iteration_hook – Method to run before each iteration. A valid
hook accepts a single argument which is the
test object.

	
run_once_profiling(postprocess_profiled_run, *args, **dargs)

	

	
setup()

	

	
warmup(*args, **dargs)

	

	
write_attr_keyval(attr_dict)

	

	
write_iteration_keyval(attr_dict, perf_dict, tap_report=None)

	

	
write_perf_keyval(perf_dict)

	

	
write_test_keyval(attr_dict)

	

	
autotest.client.shared.test.runtest(job, url, tag, args, dargs, local_namespace={}, global_namespace={}, before_test_hook=None, after_test_hook=None, before_iteration_hook=None, after_iteration_hook=None)

	

	
autotest.client.shared.test.subtest_fatal(function)

	Decorator which mark test critical.
If subtest fails the whole test ends.

	
autotest.client.shared.test.subtest_nocleanup(function)

	Decorator used to disable cleanup function.

utils Module

Convenience functions for use by tests or whomever.

NOTE: this is a mixin library that pulls in functions from several places
Note carefully what the precendece order is

There’s no really good way to do this, as this isn’t a class we can do
inheritance with, just a collection of static methods.

	
class autotest.client.shared.utils.AsyncJob(command, stdout_tee=None, stderr_tee=None, verbose=True, stdin=None, stderr_level=40, kill_func=None, close_fds=False)

	Bases: autotest.client.shared.utils.BgJob

	
cleanup()

	

	
get_stderr()

	

	
get_stdout()

	

	
output_prepare(stdout_file=None, stderr_file=None)

	

	
process_output(stdout=True, final_read=False)

	

	
wait_for(timeout=None)

	Wait for the process to finish. When timeout is provided, process is
safely destroyed after timeout.
:param timeout: Acceptable timeout
:return: results of this command

	
class autotest.client.shared.utils.BgJob(command, stdout_tee=None, stderr_tee=None, verbose=True, stdin=None, stderr_level=40, close_fds=False)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	
cleanup()

	

	
output_prepare(stdout_file=None, stderr_file=None)

	

	
process_output(stdout=True, final_read=False)

	output_prepare must be called prior to calling this

	
class autotest.client.shared.utils.CmdResult(command='', stdout='', stderr='', exit_status=None, duration=0)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Command execution result.

command: String containing the command line itself
exit_status: Integer exit code of the process
stdout: String containing stdout of the process
stderr: String containing stderr of the process
duration: Elapsed wall clock time running the process

	
class autotest.client.shared.utils.FileFieldMonitor(status_file, data_to_read, mode_diff, continuously=False, contlogging=False, separator=' +', time_step=0.1)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Monitors the information from the file and reports it’s values.

It gather the information at start and stop of the measurement or
continuously during the measurement.

	
class Monitor(master)

	Bases: threading.Thread [https://docs.python.org/2/library/threading.html#threading.Thread]

Internal monitor class to ensure continuous monitor of monitored file.

	
run()

	Start monitor in thread mode

	
FileFieldMonitor.get_status()

	

	Returns:	Status of monitored process average value,
time of test and array of monitored values and time step of
continuous run.

	
FileFieldMonitor.start()

	Start value monitor.

	
FileFieldMonitor.stop()

	Stop value monitor.

	
class autotest.client.shared.utils.ForAll

	Bases: list

	
class autotest.client.shared.utils.ForAllP

	Bases: list

Parallel version of ForAll

	
class autotest.client.shared.utils.ForAllPSE

	Bases: list

Parallel version of and suppress exception.

	
class autotest.client.shared.utils.InterruptedThread(target, args=(), kwargs={})

	Bases: threading.Thread [https://docs.python.org/2/library/threading.html#threading.Thread]

Run a function in a background thread.

	
join(timeout=None, suppress_exception=False)

	Join the thread. If target raised an exception, re-raise it.
Otherwise, return the value returned by target.

	Parameters:	
	timeout – Timeout value to pass to threading.Thread.join().

	suppress_exception – If True, don’t re-raise the exception.

	
run()

	Run target (passed to the constructor). No point in calling this
function directly. Call start() to make this function run in a new
thread.

	
class autotest.client.shared.utils.Statistic

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Class to display and collect average,
max and min values of a given data set.

	
get_average()

	

	
get_max()

	

	
get_min()

	

	
record(value)

	Record new value to statistic.

	
class autotest.client.shared.utils.SystemLoad(pids, advanced=False, time_step=0.1, cpu_cont=False, use_log=False)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Get system and/or process values and return average value of load.

	
dump(pids=[])

	Get the status of monitoring.
:param pids: List of PIDs you intend to control. Use pids=[] to control

all defined PIDs.

	return:	
	tuple([cpu load], [memory load]):

	
	([(PID1, (PID1_cpu_meas)), (PID2, (PID2_cpu_meas)), ...],

	[(PID1, (PID1_mem_meas)), (PID2, (PID2_mem_meas)), ...])

	PID1_cpu_meas:

	average_values[], test_time, cont_meas_values[[]], time_step

	PID1_mem_meas:

	average_values[], test_time, cont_meas_values[[]], time_step

where average_values[] are the measured values (mem_free,swap,...)
which are described in SystemLoad.__init__()-FileFieldMonitor.
cont_meas_values[[]] is a list of average_values in the sampling
times.

	
get_cpu_status_string(pids=[])

	Convert status to string array.
:param pids: List of PIDs you intend to control. Use pids=[] to control

all defined PIDs.

	Returns:	String format to table.

	
get_mem_status_string(pids=[])

	Convert status to string array.
:param pids: List of PIDs you intend to control. Use pids=[] to control

all defined PIDs.

	Returns:	String format to table.

	
start(pids=[])

	Start monitoring of the process system usage.
:param pids: List of PIDs you intend to control. Use pids=[] to control

all defined PIDs.

	
stop(pids=[])

	Stop monitoring of the process system usage.
:param pids: List of PIDs you intend to control. Use pids=[] to control

all defined PIDs.

	
class autotest.client.shared.utils.VersionableClass

	Bases: object [https://docs.python.org/2/library/functions.html#object]

VersionableClass provides class hierarchy which automatically select right
version of class. Class manipulation is used for this reason.
By this reason is:
Advantage) Only one version is working in one process. Class is changed in
whole process.
Disadvantage) Only one version is working in one process.

Example of usage (in utils_unittest):

class FooC(object):
 pass

#Not implemented get_version -> not used for versioning.
class VCP(FooC, VersionableClass):
 def __new__(cls, *args, **kargs):
 VCP.master_class = VCP
 return super(VCP, cls).__new__(cls, *args, **kargs)

 def foo(self):
 pass

class VC2(VCP, VersionableClass):
 @staticmethod
 def get_version():
 return "get_version_from_system"

 @classmethod
 def is_right_version(cls, version):
 if version is not None:
 if "version is satisfied":
 return True
 return False

 def func1(self):
 print "func1"

 def func2(self):
 print "func2"

get_version could be inherited.
class VC3(VC2, VersionableClass):
 @classmethod
 def is_right_version(cls, version):
 if version is not None:
 if "version+1 is satisfied":
 return True
 return False

 def func2(self):
 print "func2_2"

class M(VCP):
 pass

m = M() # <- When class is constructed the right version is
 # automatically selected. In this case VC3 is selected.
m.func2() # call VC3.func2(m)
m.func1() # call VC2.func1(m)
m.foo() # call VC1.foo(m)

When controlled "program" version is changed then is necessary call
 check_repair_versions or recreate object.

m.check_repair_versions()

priority of class. (change place where is method searched first in group
of verisonable class.)

class PP(VersionableClass):
 def __new__(cls, *args, **kargs):
 PP.master_class = PP
 return super(PP, cls).__new__(cls, *args, **kargs)

class PP2(PP, VersionableClass):
 @staticmethod
 def get_version():
 return "get_version_from_system"

 @classmethod
 def is_right_version(cls, version):
 if version is not None:
 if "version is satisfied":
 return True
 return False

 def func1(self):
 print "PP func1"

class N(VCP, PP):
 pass

n = N()

n.func1() # -> "func2"

n.set_priority_class(PP, [VCP, PP])

n.func1() # -> "PP func1"

Necessary for using:
1) Subclass of versionable class must have implemented class methods
get_version and is_right_version. These two methods are necessary
for correct version section. Class without this method will be never
chosen like suitable class.

2) Every class derived from master_class have to add to class definition
inheritance from VersionableClass. Direct inheritance from Versionable
Class is use like a mark for manipulation with VersionableClass.

3) Master of VersionableClass have to defined class variable
cls.master_class.

	
classmethod check_repair_versions(master_classes=None)

	Check version of versionable class and if version not
match repair version to correct version.

	Parameters:	master_classes (list.) – Check and repair only master_class.

	
classmethod get_version()

	Get version of installed OpenVSwtich.
Must be re-implemented for in child class.

	Returns:	Version or None when get_version is unsuccessful.

	
classmethod is_right_version(version)

	Check condition for select control class.
Function must be re-implemented in new OpenVSwitchControl class.
Must be re-implemented for in child class.

	Parameters:	version – version of OpenVSwtich

	
classmethod set_priority_class(prioritized_class, group_classes)

	Set class priority. Limited only for change bases class priority inside
one subclass.__bases__ after that continue to another class.

	
autotest.client.shared.utils.archive_as_tarball(source_dir, dest_dir, tarball_name=None, compression='bz2', verbose=True)

	Saves the given source directory to the given destination as a tarball

If the name of the archive is omitted, it will be taken from the
source_dir. If it is an absolute path, dest_dir will be ignored. But,
if both the destination directory and tarball anem is given, and the
latter is not an absolute path, they will be combined.

For archiving directory ‘/tmp’ in ‘/net/server/backup’ as file
‘tmp.tar.bz2’, simply use:

>>> utils.archive_as_tarball('/tmp', '/net/server/backup')

To save the file it with a different name, say ‘host1-tmp.tar.bz2’
and save it under ‘/net/server/backup’, use:

>>> utils.archive_as_tarball('/tmp', '/net/server/backup',
 'host1-tmp')

To save with gzip compression instead (resulting in the file
‘/net/server/backup/host1-tmp.tar.gz’), use:

>>> utils.archive_as_tarball('/tmp', '/net/server/backup',
 'host1-tmp', 'gz')

	
autotest.client.shared.utils.args_to_dict(args)

	Convert autoserv extra arguments in the form of key=val or key:val to a
dictionary. Each argument key is converted to lowercase dictionary key.

	Args:

	args - list of autoserv extra arguments.

	Returns:

	dictionary

	
autotest.client.shared.utils.ask(question, auto=False)

	Raw input with a prompt that emulates logging.

	Parameters:	
	question – Question to be asked

	auto – Whether to return “y” instead of asking the question

	
autotest.client.shared.utils.aton(sr)

	Transform a string to a number(include float and int). If the string is
not in the form of number, just return false.

	Parameters:	sr – string to transfrom

	Returns:	float, int or False for failed transform

	
autotest.client.shared.utils.bitlist_to_string(data)

	Transform from bit list to ASCII string.

	Parameters:	data – Bit list to be transformed

	
autotest.client.shared.utils.close_log_file(filename)

	

	
autotest.client.shared.utils.compare_versions(ver1, ver2)

	Version number comparison between ver1 and ver2 strings.

>>> compare_tuple("1", "2")
-1
>>> compare_tuple("foo-1.1", "foo-1.2")
-1
>>> compare_tuple("1.2", "1.2a")
-1
>>> compare_tuple("1.2b", "1.2a")
1
>>> compare_tuple("1.3.5.3a", "1.3.5.3b")
-1

	Args:

	ver1: version string
ver2: version string

	Returns:

	
	int: 1 if ver1 > ver2

	
0 if ver1 == ver2

-1 if ver1 < ver2

	
autotest.client.shared.utils.configure(extra=None, configure='./configure')

	Run configure passing in the correct host, build, and target options.

	Parameters:	
	extra – extra command line arguments to pass to configure

	configure – which configure script to use

	
autotest.client.shared.utils.convert_data_size(size, default_sufix='B')

	Convert data size from human readable units to an int of arbitrary size.

	Parameters:	
	size – Human readable data size representation (string).

	default_sufix – Default sufix used to represent data.

	Returns:	Int with data size in the appropriate order of magnitude.

	
autotest.client.shared.utils.convert_ipv4_to_ipv6(ipv4)

	Translates a passed in string of an ipv4 address to an ipv6 address.

	Parameters:	ipv4 – a string of an ipv4 address

	
autotest.client.shared.utils.cpu_affinity_by_task(pid, vcpu_pid)

	This function returns the allowed cpus from the proc entry
for each vcpu’s through its task id for a pid(of a VM)

	
autotest.client.shared.utils.create_subnet_mask(bits)

	

	
autotest.client.shared.utils.create_x509_dir(path, cacert_subj, server_subj, passphrase, secure=False, bits=1024, days=1095)

	Creates directory with freshly generated:
ca-cart.pem, ca-key.pem, server-cert.pem, server-key.pem,

	Parameters:	
	path – defines path to directory which will be created

	cacert_subj – ca-cert.pem subject

:param server_key.csr subject
:param passphrase - passphrase to ca-key.pem
:param secure = False - defines if the server-key.pem will use a passphrase
:param bits = 1024: bit length of keys
:param days = 1095: cert expiration

	Raises:	
	ValueError – openssl not found or rc != 0

	OSError – if os.makedirs() fails

	
autotest.client.shared.utils.delete_pid_file_if_exists(program_name, pid_files_dir=None)

	Tries to remove <program_name>.pid from the main autotest directory.

	
autotest.client.shared.utils.deprecated(func)

	This is a decorator which can be used to mark functions as deprecated.
It will result in a warning being emitted when the function is used.

	
autotest.client.shared.utils.display_data_size(size)

	Display data size in human readable units.

	Parameters:	size (int [https://docs.python.org/2/library/functions.html#int]) – Data size, in Bytes.

	Returns:	Human readable string with data size.

	
autotest.client.shared.utils.etraceback(prep, exc_info)

	
Enhanced Traceback formats traceback into lines “prep: line

	name: line”

	

	param prep:	desired line preposition

	param exc_info:	sys.exc_info of the exception

	return:	string which contains beautifully formatted exception

	
autotest.client.shared.utils.find_command(cmd)

	Try to find a command in the PATH, paranoid version.

	Parameters:	cmd – Command to be found.

	Raise:	ValueError in case the command was not found.

	
autotest.client.shared.utils.find_free_port(start_port, end_port, address='localhost')

	Return a host free port in the range [start_port, end_port].

	Parameters:	
	start_port – First port that will be checked.

	end_port – Port immediately after the last one that will be checked.

	
autotest.client.shared.utils.find_free_ports(start_port, end_port, count, address='localhost')

	Return count of host free ports in the range [start_port, end_port].

@count: Initial number of ports known to be free in the range.
:param start_port: First port that will be checked.
:param end_port: Port immediately after the last one that will be checked.

	
autotest.client.shared.utils.find_substring(string, pattern1, pattern2=None)

	Return the match of pattern1 in string. Or return the match of pattern2
if pattern is not matched.

@string: string
@pattern1: first pattern want to match in string, must set.
@pattern2: second pattern, it will be used if pattern1 not match, optional.

Return: Match substing or None

	
autotest.client.shared.utils.format_ip_with_mask(ip, mask_bits)

	

	
autotest.client.shared.utils.format_str_for_message(msg_str)

	Format msg_str so that it can be appended to a message.
If msg_str consists of one line, prefix it with a space.
If msg_str consists of multiple lines, prefix it with a newline.

	Parameters:	msg_str – string that will be formatted.

	
autotest.client.shared.utils.generate_random_id()

	Return a random string suitable for use as a qemu id.

	
autotest.client.shared.utils.generate_random_string(length, ignore_str='!"#$%&\'()*+, -./:;<=>?@[\\]^_`{|}~', convert_str='')

	Return a random string using alphanumeric characters.

	Parameters:	
	length – Length of the string that will be generated.

	ignore_str – Characters that will not include in generated string.

	convert_str – Characters that need to be escaped (prepend “”).

	Returns:	The generated random string.

	
autotest.client.shared.utils.generate_tmp_file_name(file_name, ext=None, directory='/tmp/')

	Returns a temporary file name. The file is not created.

	
autotest.client.shared.utils.get_arch(run_function=<function run>)

	Get the hardware architecture of the machine.
run_function is used to execute the commands. It defaults to
utils.run() but a custom method (if provided) should be of the
same schema as utils.run. It should return a CmdResult object and
throw a CmdError exception.

	
autotest.client.shared.utils.get_archive_tarball_name(source_dir, tarball_name, compression)

	Get the name for a tarball file, based on source, name and compression

	
autotest.client.shared.utils.get_children_pids(ppid)

	Get all PIDs of children/threads of parent ppid
param ppid: parent PID
return: list of PIDs of all children/threads of ppid

	
autotest.client.shared.utils.get_cpu_percentage(function, *args, **dargs)

	Returns a tuple containing the CPU% and return value from function call.

This function calculates the usage time by taking the difference of
the user and system times both before and after the function call.

	
autotest.client.shared.utils.get_field(data, param, linestart='', sep=' ')

	Parse data from string.
:param data: Data to parse.

	example:

	
	data:

	cpu 324 345 34 5 345
cpu0 34 11 34 34 33
^^^^
start of line
params 0 1 2 3 4

	Parameters:	
	param – Position of parameter after linestart marker.

	linestart – String to which start line with parameters.

	sep – Separator between parameters regular expression.

	
autotest.client.shared.utils.get_file(src, dest, permissions=None)

	Get a file from src, which can be local or a remote URL

	
autotest.client.shared.utils.get_full_pci_id(pci_id)

	Get full PCI ID of pci_id.

	Parameters:	pci_id – PCI ID of a device.

	
autotest.client.shared.utils.get_hash_from_file(hash_path, dvd_basename)

	Get the a hash from a given DVD image from a hash file
(Hash files are usually named MD5SUM or SHA1SUM and are located inside the
download directories of the DVDs)

	Parameters:	
	hash_path – Local path to a hash file.

	cd_image – Basename of a CD image

	
autotest.client.shared.utils.get_ip_local_port_range()

	

	
autotest.client.shared.utils.get_num_logical_cpus_per_socket(run_function=<function run>)

	Get the number of cores (including hyperthreading) per cpu.
run_function is used to execute the commands. It defaults to
utils.run() but a custom method (if provided) should be of the
same schema as utils.run. It should return a CmdResult object and
throw a CmdError exception.

	
autotest.client.shared.utils.get_path(base_path, user_path)

	Translate a user specified path to a real path.
If user_path is relative, append it to base_path.
If user_path is absolute, return it as is.

	Parameters:	
	base_path – The base path of relative user specified paths.

	user_path – The user specified path.

	
autotest.client.shared.utils.get_pid_cpu(pid)

	Get the process used cpus.

	Parameters:	pid – process id

	Returns:	A list include all cpus the process used

	Return type:	list

	
autotest.client.shared.utils.get_pid_from_file(program_name, pid_files_dir=None)

	Reads the pid from <program_name>.pid in the autotest directory.

:param program_name the name of the program
:return: the pid if the file exists, None otherwise.

	
autotest.client.shared.utils.get_pid_path(program_name, pid_files_dir=None)

	

	
autotest.client.shared.utils.get_process_name(pid)

	Get process name from PID.
:param pid: PID of process.

	
autotest.client.shared.utils.get_relative_path(path, reference)

	Given 2 absolute paths “path” and “reference”, compute the path of
“path” as relative to the directory “reference”.

:param path the absolute path to convert to a relative path
:param reference an absolute directory path to which the relative

path will be computed

	
autotest.client.shared.utils.get_stderr_level(stderr_is_expected)

	

	
autotest.client.shared.utils.get_stream_tee_file(stream, level, prefix='')

	

	
autotest.client.shared.utils.get_thread_cpu(thread)

	Get the light weight process(thread) used cpus.

	Parameters:	thread (string [https://docs.python.org/2/library/string.html#module-string]) – thread checked

	Returns:	A list include all cpus the thread used

	Return type:	list

	
autotest.client.shared.utils.get_unique_name(check, prefix='', suffix='', length=None, skip=None)

	Get unique name according to check function, use only 1000 iterations.
:param cmp: Function called to discover name uniqueness
:param prefix: Name prefix
:param suffix: Name suffix
:param length: Length of random string, when None use numbers (0,1,2)
:param skip: skip n numbers (only when length=None

	Raises:	StopIteration – In case no unique name obtained in 1000 iterations

	Returns:	Unique name according to check function

	
autotest.client.shared.utils.get_unused_port()

	Finds a semi-random available port. A race condition is still
possible after the port number is returned, if another process
happens to bind it.

	Returns:

	A port number that is unused on both TCP and UDP.

	
autotest.client.shared.utils.get_vendor_from_pci_id(pci_id)

	Check out the device vendor ID according to pci_id.

	Parameters:	pci_id – PCI ID of a device.

	
autotest.client.shared.utils.hash(type, input=None)

	Returns an hash object of type md5 or sha1. This function is implemented in
order to encapsulate hash objects in a way that is compatible with python
2.4 and python 2.6 without warnings.

Note that even though python 2.6 hashlib supports hash types other than
md5 and sha1, we are artificially limiting the input values in order to
make the function to behave exactly the same among both python
implementations.

	Parameters:	input – Optional input string that will be used to update the hash.

	
autotest.client.shared.utils.import_site_class(path, module, classname, baseclass, modulefile=None)

	Try to import site specific class from site specific file if it exists

	Args:

	path: full filename of the source file calling this (ie __file__)
module: full module name
classname: class name to be loaded from site file
baseclass: base class object to return when no site file present or

to mixin when site class exists but is not inherited from baseclass

modulefile: module filename

	Returns: baseclass if site specific class does not exist, the site specific

	class if it exists and is inherited from baseclass or a mixin of the
site specific class and baseclass when the site specific class exists
and is not inherited from baseclass

Raises: ImportError if the site file exists but imports fails

	
autotest.client.shared.utils.import_site_function(path, module, funcname, dummy, modulefile=None)

	Try to import site specific function from site specific file if it exists

	Args:

	path: full filename of the source file calling this (ie __file__)
module: full module name
funcname: function name to be imported from site file
dummy: dummy function to return in case there is no function to import
modulefile: module filename

Returns: site specific function object or dummy

Raises: ImportError if the site file exists but imports fails

	
autotest.client.shared.utils.import_site_module(path, module, dummy=None, modulefile=None)

	Try to import the site specific module if it exists.

:param path full filename of the source file calling this (ie __file__)
:param module full module name
:param dummy dummy value to return in case there is no symbol to import
:param modulefile module filename

	Returns:	site specific module or dummy

:raise ImportError if the site file exists but imports fails

	
autotest.client.shared.utils.import_site_symbol(path, module, name, dummy=None, modulefile=None)

	Try to import site specific symbol from site specific file if it exists

:param path full filename of the source file calling this (ie __file__)
:param module full module name
:param name symbol name to be imported from the site file
:param dummy dummy value to return in case there is no symbol to import
:param modulefile module filename

	Returns:	site specific symbol or dummy

:raise ImportError if the site file exists but imports fails

	
autotest.client.shared.utils.interactive_download(url, output_file, title='', chunk_size=102400)

	Interactively downloads a given file url to a given output file

	Parameters:	
	url (string [https://docs.python.org/2/library/string.html#module-string]) – URL for the file to be download

	output_file (string [https://docs.python.org/2/library/string.html#module-string]) – file name or absolute path on which to save the file to

	title (string [https://docs.python.org/2/library/string.html#module-string]) – optional title to go along the progress bar

	chunk_size (integer) – amount of data to read at a time

	
autotest.client.shared.utils.ip_to_long(ip)

	

	
autotest.client.shared.utils.is_mounted(src, mount_point, fstype, perm=None, verbose=True, fstype_mtab=None)

	Check mount status from /etc/mtab

	Parameters:	
	src (string [https://docs.python.org/2/library/string.html#module-string]) – mount source

	mount_point (string [https://docs.python.org/2/library/string.html#module-string]) – mount point

	fstype (string [https://docs.python.org/2/library/string.html#module-string]) – file system type

	perm (string [https://docs.python.org/2/library/string.html#module-string]) – mount permission

	fstype_mtab (str [https://docs.python.org/2/library/functions.html#str]) – file system type in mtab could be different

	Returns:	if the src is mounted as expect

	Return type:	Boolean

	
autotest.client.shared.utils.is_port_free(port, address)

	Return True if the given port is available for use.

	Parameters:	port – Port number

	
autotest.client.shared.utils.is_url(path)

	Return true if path looks like a URL

	
autotest.client.shared.utils.join_bg_jobs(bg_jobs, timeout=None)

	Joins the bg_jobs with the current thread.

Returns the same list of bg_jobs objects that was passed in.

	
autotest.client.shared.utils.kill_process_tree(pid, sig=9)

	Signal a process and all of its children.

If the process does not exist – return.

	Parameters:	
	pid – The pid of the process to signal.

	sig – The signal to send to the processes.

	
autotest.client.shared.utils.lock_file(filename, mode=2)

	

	
autotest.client.shared.utils.log_last_traceback(msg=None, log=<function error>)

	Writes last traceback into specified log.
:param msg: Override the default message. [“Original traceback”]
:param log: Where to log the traceback [logging.error]

	
autotest.client.shared.utils.log_line(filename, line)

	
Write a line to a file. ‘

‘ is appended to the line.

	param filename:	Path of file to write to, either absolute or relative to
the dir set by set_log_file_dir().

	param line:	Line to write.

	
autotest.client.shared.utils.long_to_ip(number)

	

	
autotest.client.shared.utils.make(extra='', make='make', timeout=None, ignore_status=False)

	Run make, adding MAKEOPTS to the list of options.

	Parameters:	extra – extra command line arguments to pass to make.

	
autotest.client.shared.utils.matrix_to_string(matrix, header=None)

	Return a pretty, aligned string representation of a nxm matrix.

This representation can be used to print any tabular data, such as
database results. It works by scanning the lengths of each element
in each column, and determining the format string dynamically.

	Parameters:	
	matrix – Matrix representation (list with n rows of m elements).

	header – Optional tuple or list with header elements to be displayed.

	
autotest.client.shared.utils.merge_trees(src, dest)

	Merges a source directory tree at ‘src’ into a destination tree at
‘dest’. If a path is a file in both trees than the file in the source
tree is APPENDED to the one in the destination tree. If a path is
a directory in both trees then the directories are recursively merged
with this function. In any other case, the function will skip the
paths that cannot be merged (instead of failing).

	
autotest.client.shared.utils.mount(src, mount_point, fstype, perm=None, verbose=True, fstype_mtab=None)

	Mount the src into mount_point of the host.

	Src:	mount source

	Mount_point:	mount point

	Fstype:	file system type

	Perm:	mount permission

	Parameters:	fstype_mtab (str [https://docs.python.org/2/library/functions.html#str]) – file system type in mtab could be different

	
autotest.client.shared.utils.normalize_hostname(alias)

	

	
autotest.client.shared.utils.nuke_pid(pid, signal_queue=(15, 9))

	

	
autotest.client.shared.utils.nuke_subprocess(subproc)

	

	
autotest.client.shared.utils.open_write_close(filename, data)

	

	
autotest.client.shared.utils.parallel(targets)

	Run multiple functions in parallel.

	Parameters:	targets – A sequence of tuples or functions. If it’s a sequence of
tuples, each tuple will be interpreted as (target, args, kwargs) or
(target, args) or (target,) depending on its length. If it’s a
sequence of functions, the functions will be called without
arguments.

	Returns:	A list of the values returned by the functions called.

	
autotest.client.shared.utils.pid_exists(pid)

	Return True if a given PID exists.

	Parameters:	pid – Process ID number.

	
autotest.client.shared.utils.pid_is_alive(pid)

	True if process pid exists and is not yet stuck in Zombie state.
Zombies are impossible to move between cgroups, etc.
pid can be integer, or text of integer.

	
autotest.client.shared.utils.process_or_children_is_defunct(ppid)

	Verify if any processes from PPID is defunct.

Attempt to verify if parent process and any children from PPID is defunct
(zombie) or not.
:param ppid: The parent PID of the process to verify.

	
autotest.client.shared.utils.program_is_alive(program_name, pid_files_dir=None)

	Checks if the process is alive and not in Zombie state.

:param program_name the name of the program
:return: True if still alive, False otherwise

	
autotest.client.shared.utils.read_file(filename)

	

	
autotest.client.shared.utils.read_keyval(path)

	Read a key-value pair format file into a dictionary, and return it.
Takes either a filename or directory name as input. If it’s a
directory name, we assume you want the file to be called keyval.

	
autotest.client.shared.utils.read_one_line(filename)

	

	
autotest.client.shared.utils.run(command, timeout=None, ignore_status=False, stdout_tee=None, stderr_tee=None, verbose=True, stdin=None, stderr_is_expected=None, args=())

	Run a command on the host.

	Parameters:	
	command – the command line string.

	timeout – time limit in seconds before attempting to kill the
running process. The run() function will take a few seconds
longer than ‘timeout’ to complete if it has to kill the process.

	ignore_status – do not raise an exception, no matter what the exit
code of the command is.

	stdout_tee – optional file-like object to which stdout data
will be written as it is generated (data will still be stored
in result.stdout).

	stderr_tee – likewise for stderr.

	verbose – if True, log the command being run.

	stdin – stdin to pass to the executed process (can be a file
descriptor, a file object of a real file or a string).

	args – sequence of strings of arguments to be given to the command
inside ” quotes after they have been escaped for that; each
element in the sequence will be given as a separate command
argument

	Returns:	a CmdResult object

	Raises:	CmdError – the exit code of the command execution was not 0

	
autotest.client.shared.utils.run_bg(*args, **dargs)

	Function deprecated. Please use BgJob class instead.

	
autotest.client.shared.utils.run_parallel(commands, timeout=None, ignore_status=False, stdout_tee=None, stderr_tee=None)

	Behaves the same as run() with the following exceptions:

	commands is a list of commands to run in parallel.

	ignore_status toggles whether or not an exception should be raised
on any error.

	Returns:	a list of CmdResult objects

	
class autotest.client.shared.utils.run_randomly(run_sequentially=False)

	
	
add(*args, **dargs)

	

	
run(fn)

	

	
autotest.client.shared.utils.safe_kill(pid, signal)

	Attempt to send a signal to a given process that may or may not exist.

	Parameters:	signal – Signal number.

	
autotest.client.shared.utils.safe_rmdir(path, timeout=10)

	Try to remove a directory safely, even on NFS filesystems.

Sometimes, when running an autotest client test on an NFS filesystem, when
not all filedescriptors are closed, NFS will create some temporary files,
that will make shutil.rmtree to fail with error 39 (directory not empty).
So let’s keep trying for a reasonable amount of time before giving up.

	Parameters:	
	path (string [https://docs.python.org/2/library/string.html#module-string]) – Path to a directory to be removed.

	timeout (int [https://docs.python.org/2/library/functions.html#int]) – Time that the function will try to remove the dir before
giving up (seconds)

	Raises:	OSError, with errno 39 in case after the timeout
shutil.rmtree could not successfuly complete. If any attempt
to rmtree fails with errno different than 39, that exception
will be just raised.

	
autotest.client.shared.utils.selinux_enforcing()

	Returns True if SELinux is in enforcing mode, False if permissive/disabled

	
autotest.client.shared.utils.set_ip_local_port_range(lower, upper)

	

	
autotest.client.shared.utils.set_log_file_dir(directory)

	Set the base directory for log files created by log_line().

	Parameters:	dir – Directory for log files.

	
autotest.client.shared.utils.sh_escape(command)

	Escape special characters from a command so that it can be passed
as a double quoted (” ”) string in a (ba)sh command.

	Args:

	command: the command string to escape.

	Returns:

	The escaped command string. The required englobing double
quotes are NOT added and so should be added at some point by
the caller.

See also: http://www.tldp.org/LDP/abs/html/escapingsection.html

	
autotest.client.shared.utils.signal_pid(pid, sig)

	Sends a signal to a process id. Returns True if the process terminated
successfully, False otherwise.

	
autotest.client.shared.utils.signal_program(program_name, sig=15, pid_files_dir=None)

	Sends a signal to the process listed in <program_name>.pid

:param program_name the name of the program
:param sig signal to send

	
autotest.client.shared.utils.string_to_bitlist(data)

	Transform from ASCII string to bit list.

	Parameters:	data – String to be transformed

	
autotest.client.shared.utils.strip_console_codes(output)

	Remove the Linux console escape and control sequences from the console
output. Make the output readable and can be used for result check. Now
only remove some basic console codes using during boot up.

	Parameters:	output (string [https://docs.python.org/2/library/string.html#module-string]) – The output from Linux console

	Returns:	the string wihout any special codes

	Return type:	string [https://docs.python.org/2/library/string.html#module-string]

	
autotest.client.shared.utils.strip_unicode(input)

	

	
autotest.client.shared.utils.system(command, timeout=None, ignore_status=False, verbose=True)

	Run a command

	Parameters:	
	timeout – timeout in seconds

	ignore_status – if ignore_status=False, throw an exception if the
command’s exit code is non-zero
if ignore_status=True, return the exit code.

	verbose – if True, log the command being run.

	Returns:	exit status of command
(note, this will always be zero unless ignore_status=True)

	
autotest.client.shared.utils.system_output(command, timeout=None, ignore_status=False, retain_output=False, args=(), verbose=True)

	Run a command and return the stdout output.

	Parameters:	
	command – command string to execute.

	timeout – time limit in seconds before attempting to kill the
running process. The function will take a few seconds longer
than ‘timeout’ to complete if it has to kill the process.

	ignore_status – do not raise an exception, no matter what the exit
code of the command is.

	retain_output – set to True to make stdout/stderr of the command
output to be also sent to the logging system

	args – sequence of strings of arguments to be given to the command
inside ” quotes after they have been escaped for that; each
element in the sequence will be given as a separate command
argument

	verbose – if True, log the command being run.

	Returns:	a string with the stdout output of the command.

	
autotest.client.shared.utils.system_output_parallel(commands, timeout=None, ignore_status=False, retain_output=False)

	

	
autotest.client.shared.utils.system_parallel(commands, timeout=None, ignore_status=False)

	This function returns a list of exit statuses for the respective
list of commands.

	
autotest.client.shared.utils.umount(src, mount_point, fstype, verbose=True, fstype_mtab=None)

	Umount the src mounted in mount_point.

	Src:	mount source

	Mount_point:	mount point

	Type:	file system type

	Parameters:	fstype_mtab (str [https://docs.python.org/2/library/functions.html#str]) – file system type in mtab could be different

	
autotest.client.shared.utils.unique(llist)

	Return a list of the elements in list, but without duplicates.

	Parameters:	list – List with values.

	Returns:	List with non duplicate elements.

	
autotest.client.shared.utils.unlock_file(lockfile)

	

	
autotest.client.shared.utils.unmap_url(srcdir, src, destdir='.')

	Receives either a path to a local file or a URL.
returns either the path to the local file, or the fetched URL

	unmap_url(‘/usr/src’, ‘foo.tar’, ‘/tmp’)

	= ‘/usr/src/foo.tar’

	unmap_url(‘/usr/src’, ‘http://site/file‘, ‘/tmp’)

	= ‘/tmp/file’
(after retrieving it)

	
autotest.client.shared.utils.update_version(srcdir, preserve_srcdir, new_version, install, *args, **dargs)

	Make sure srcdir is version new_version

If not, delete it and install() the new version.

In the preserve_srcdir case, we just check it’s up to date,
and if not, we rerun install, without removing srcdir

	
autotest.client.shared.utils.urlopen(url, data=None, timeout=5)

	Wrapper to urllib2.urlopen with timeout addition.

	
autotest.client.shared.utils.urlretrieve(url, filename, data=None, timeout=300)

	Retrieve a file from given url.

	
autotest.client.shared.utils.verify_running_as_root()

	Verifies whether we’re running under UID 0 (root).

	Raise:	error.TestNAError

	
autotest.client.shared.utils.wait_for(func, timeout, first=0.0, step=1.0, text=None)

	If func() evaluates to True before timeout expires, return the
value of func(). Otherwise return None.

@brief: Wait until func() evaluates to True.

	Parameters:	
	timeout – Timeout in seconds

	first – Time to sleep before first attempt

	steps – Time to sleep between attempts in seconds

	text – Text to print while waiting, for debug purposes

	
autotest.client.shared.utils.write_keyval(path, dictionary, type_tag=None, tap_report=None)

	Write a key-value pair format file out to a file. This uses append
mode to open the file, so existing text will not be overwritten or
reparsed.

If type_tag is None, then the key must be composed of alphanumeric
characters (or dashes+underscores). However, if type-tag is not
null then the keys must also have “{type_tag}” as a suffix. At
the moment the only valid values of type_tag are “attr” and “perf”.

	Parameters:	
	path – full path of the file to be written

	dictionary – the items to write

	type_tag – see text above

	
autotest.client.shared.utils.write_one_line(filename, line)

	

	
autotest.client.shared.utils.write_pid(program_name, pid_files_dir=None)

	Try to drop <program_name>.pid in the main autotest directory.

	Args:

	program_name: prefix for file name

utils_cgroup Module

Helpers for cgroup testing.

	copyright:	2011 Red Hat Inc.

	author:	Lukas Doktor <ldoktor@redhat.com>

	
class autotest.client.shared.utils_cgroup.Cgroup(module, _client)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Cgroup handling class.

	
cgclassify_cgroup(pid, cgroup)

	Classify pid into cgroup

	Parameters:	
	pid – pid of the process

	cgroup – cgroup name

	
cgdelete_all_cgroups()

	Delete all cgroups in the module

	
cgdelete_cgroup(cgroup, recursive=False)

	Delete desired cgroup.

	Params cgroup:	desired cgroup

:params force:If true, sub cgroup can be deleted with parent cgroup

	
cgexec(cgroup, cmd, args='')

	Execute command in desired cgroup

	Param:	cgroup: Desired cgroup

	Param:	cmd: Executed command

	Param:	args: Executed command’s parameters

	
cgset_property(prop, value, pwd=None, check=True, checkprop=None)

	Sets the property value by cgset command

	Param:	prop: property name (file)

	Param:	value: desired value

	Parameters:	
	pwd – cgroup directory

	check – check the value after setup / override checking value

	checkprop – override prop when checking the value

	
get_cgroup_index(cgroup)

	Get cgroup’s index in cgroups

	Param:	cgroup: cgroup name

	Returns:	index of cgroup

	
get_cgroup_name(pwd=None)

	Get cgroup’s name

	Param:	pwd: cgroup name

	Returns:	cgroup’s name

	
get_pids(pwd=None)

	Get all pids in cgroup

	Params:	pwd: cgroup directory

	Returns:	all pids(list)

	
get_property(prop, pwd=None)

	Gets the property value
:param prop: property name (file)
:param pwd: cgroup directory
:return: [] values or None when FAILED

	
initialize(modules)

	Initializes object for use.

	Parameters:	modules – Array of all available cgroup modules.

	
is_cgroup(pid, pwd)

	Checks if the ‘pid’ process is in ‘pwd’ cgroup
:param pid: pid of the process
:param pwd: cgroup directory
:return: 0 when is ‘pwd’ member

	
is_root_cgroup(pid)

	Checks if the ‘pid’ process is in root cgroup (WO cgroup)
:param pid: pid of the process
:return: 0 when is ‘root’ member

	
mk_cgroup(pwd=None, cgroup=None)

	Creates new temporary cgroup
:param pwd: where to create this cgroup (default: self.root)
:param cgroup: desired cgroup name
:return: last cgroup index

	
mk_cgroup_cgcreate(pwd=None, cgroup=None)

	Make a cgroup by cgcreate command

	Params:	cgroup: Maked cgroup name

	Returns:	last cgroup index

	
refresh_cgroups()

	Refresh all cgroups path.

	
rm_cgroup(pwd)

	Removes cgroup.

	Parameters:	pwd – cgroup directory.

	
set_cgroup(pid, pwd=None)

	Sets cgroup membership
:param pid: pid of the process
:param pwd: cgroup directory

	
set_property(prop, value, pwd=None, check=True, checkprop=None)

	Sets the property value
:param prop: property name (file)
:param value: desired value
:param pwd: cgroup directory
:param check: check the value after setup / override checking value
:param checkprop: override prop when checking the value

	
set_property_h(prop, value, pwd=None, check=True, checkprop=None)

	Sets the one-line property value concerning the K,M,G postfix
:param prop: property name (file)
:param value: desired value
:param pwd: cgroup directory
:param check: check the value after setup / override checking value
:param checkprop: override prop when checking the value

	
set_root_cgroup(pid)

	Resets the cgroup membership (sets to root)
:param pid: pid of the process
:return: 0 when PASSED

	
smoke_test()

	Smoke test
Module independent basic tests

	
test(cmd)

	Executes cgroup_client.py with cmd parameter.

	Parameters:	cmd – command to be executed

	Returns:	subprocess.Popen() process

	
class autotest.client.shared.utils_cgroup.CgroupModules(mountdir=None)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Handles the list of different cgroup filesystems.

	
get_pwd(module)

	Returns the mount directory of ‘module’
:param module: desired module (memory, ...)
:return: mount directory of ‘module’ or None

	
init(_modules)

	
	Checks the mounted modules and if necessary mounts them into tmp

	mountdir.

	Parameters:	_modules – Desired modules.’memory’,’cpu,cpuset’...

	Returns:	Number of initialized modules.

	
autotest.client.shared.utils_cgroup.all_cgroup_delete()

	Clear all cgroups in system

	
autotest.client.shared.utils_cgroup.cgconfig_condrestart()

	Condrestart cgconfig service

	
autotest.client.shared.utils_cgroup.cgconfig_exists()

	Check if cgconfig is available on the host or perhaps systemd is used

	
autotest.client.shared.utils_cgroup.cgconfig_is_running()

	Check cgconfig service status

	
autotest.client.shared.utils_cgroup.cgconfig_restart()

	Restart cgconfig service

	
autotest.client.shared.utils_cgroup.cgconfig_start()

	Stop cgconfig service

	
autotest.client.shared.utils_cgroup.cgconfig_stop()

	Start cgconfig service

	
autotest.client.shared.utils_cgroup.get_all_controllers()

	Get all controllers used in system

	Returns:	all used controllers(controller_list)

	
autotest.client.shared.utils_cgroup.get_cgroup_mountpoint(controller)

	Get desired controller’s mountpoint

@controller: Desired controller
:return: controller’s mountpoint

	
autotest.client.shared.utils_cgroup.get_load_per_cpu(_stats=None)

	Gather load per cpu from /proc/stat
:param _stats: previous values
:return: list of diff/absolute values of CPU times [SUM, CPU1, CPU2, ...]

	
autotest.client.shared.utils_cgroup.resolve_task_cgroup_path(pid, controller)

	Resolving cgroup mount path of a particular task

	Params:	pid : process id of a task for which the cgroup path required

	Params:	controller: takes one of the controller names in controller list

	Returns:	resolved path for cgroup controllers of a given pid

	
autotest.client.shared.utils_cgroup.service_cgconfig_control(action)

	Cgconfig control by action.

If cmd executes successfully, return True, otherwise return False.
If the action is status, return True when it’s running, otherwise return
False. To check if the cgconfig stuff is available, use action “exists”.

@ param action: start|stop|status|restart|condrestart

utils_koji Module

	
class autotest.client.shared.utils_koji.KojiClient(cmd=None)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Stablishes a connection with the build system, either koji or brew.

This class provides convenience methods to retrieve information on packages
and the packages themselves hosted on the build system. Packages should be
specified in the KojiPgkSpec syntax.

	
CMD_LOOKUP_ORDER = ['/usr/bin/brew', '/usr/bin/koji']

	

	
CONFIG_MAP = {'/usr/bin/brew': '/etc/brewkoji.conf', '/usr/bin/koji': '/etc/koji.conf'}

	

	
get_default_command()

	Looks up for koji or brew “binaries” on the system

Systems with plain koji usually don’t have a brew cmd, while systems
with koji, have both koji and brew utilities. So we look for brew
first, and if found, we consider that the system is configured for
brew. If not, we consider this is a system with plain koji.

	Returns:	either koji or brew command line executable path, or None

	
get_pkg_base_url()

	Gets the base url for packages in Koji

	
get_pkg_info(pkg)

	Returns information from Koji on the package

	Parameters:	pkg (KojiPkgSpec) – information about the package, as a KojiPkgSpec instance

	Returns:	information from Koji about the specified package

	
get_pkg_rpm_file_names(pkg, arch=None)

	Gets the file names for the RPM packages specified in pkg

	Parameters:	
	pkg (KojiPkgSpec) – a package specification

	arch (string [https://docs.python.org/2/library/string.html#module-string]) – packages built for this architecture, but also including
architecture independent (noarch) packages

	
get_pkg_rpm_info(pkg, arch=None)

	Returns a list of information on the RPM packages found on koji

	Parameters:	
	pkg (KojiPkgSpec) – a package specification

	arch (string [https://docs.python.org/2/library/string.html#module-string]) – packages built for this architecture, but also including
architecture independent (noarch) packages

	
get_pkg_rpm_names(pkg, arch=None)

	Gets the names for the RPM packages specified in pkg

	Parameters:	
	pkg (KojiPkgSpec) – a package specification

	arch (string [https://docs.python.org/2/library/string.html#module-string]) – packages built for this architecture, but also including
architecture independent (noarch) packages

	
get_pkg_urls(pkg, arch=None)

	Gets the urls for the packages specified in pkg

	Parameters:	
	pkg (KojiPkgSpec) – a package specification

	arch (string [https://docs.python.org/2/library/string.html#module-string]) – packages built for this architecture, but also including
architecture independent (noarch) packages

	
get_pkgs(pkg, dst_dir, arch=None)

	Download the packages

	Parameters:	
	pkg (KojiPkgSpec) – a package specification

	dst_dir (string [https://docs.python.org/2/library/string.html#module-string]) – the destination directory, where the downloaded
packages will be saved on

	arch (string [https://docs.python.org/2/library/string.html#module-string]) – packages built for this architecture, but also including
architecture independent (noarch) packages

	
get_scratch_base_url()

	Gets the base url for scratch builds in Koji

	
get_scratch_pkg_urls(pkg, arch=None)

	Gets the urls for the scratch packages specified in pkg

	Parameters:	
	pkg (KojiScratchPkgSpec) – a scratch package specification

	arch (string [https://docs.python.org/2/library/string.html#module-string]) – packages built for this architecture, but also including
architecture independent (noarch) packages

	
get_scratch_pkgs(pkg, dst_dir, arch=None)

	Download the packages from a scratch build

	Parameters:	
	pkg (KojiScratchPkgSpec) – a scratch package specification

	dst_dir (string [https://docs.python.org/2/library/string.html#module-string]) – the destination directory, where the downloaded
packages will be saved on

	arch (string [https://docs.python.org/2/library/string.html#module-string]) – packages built for this architecture, but also including
architecture independent (noarch) packages

	
get_session_options()

	Filter only options necessary for setting up a cobbler client session

	Returns:	only the options used for session setup

	
is_command_valid()

	Checks if the currently set koji command is valid

	Returns:	True or False

	
is_config_valid()

	Checks if the currently set koji configuration is valid

	Returns:	True or False

	
is_pkg_spec_build_valid(pkg)

	Checks if build is valid on Koji

	Parameters:	pkg – a Pkg instance

	
is_pkg_spec_tag_valid(pkg)

	Checks if tag is valid on Koji

	Parameters:	pkg (KojiPkgSpec) – a package specification

	
is_pkg_valid(pkg)

	Checks if this package is altogether valid on Koji

This verifies if the build or tag specified in the package
specification actually exist on the Koji server

	Returns:	True or False

	
read_config(check_is_valid=True)

	Reads options from the Koji configuration file

By default it checks if the koji configuration is valid

	Parameters:	check_valid (boolean) – whether to include a check on the configuration

	Raise:	ValueError

	Returns:	None

	
class autotest.client.shared.utils_koji.KojiDirIndexParser

	Bases: HTMLParser.HTMLParser [https://docs.python.org/2/library/htmlparser.html#HTMLParser.HTMLParser]

Parser for HTML directory index pages, specialized to look for RPM links

	
handle_starttag(tag, attrs)

	Handle tags during the parsing

This just looks for links (‘a’ tags) for files ending in .rpm

	
class autotest.client.shared.utils_koji.KojiPkgSpec(text='', tag=None, build=None, package=None, subpackages=[])

	Bases: object [https://docs.python.org/2/library/functions.html#object]

A package specification syntax parser for Koji

This holds information on either tag or build, and packages to be fetched
from koji and possibly installed (features external do this class).

New objects can be created either by providing information in the textual
format or by using the actual parameters for tag, build, package and sub-
packages. The textual format is useful for command line interfaces and
configuration files, while using parameters is better for using this in
a programatic fashion.

The following sets of examples are interchangeable. Specifying all packages
part of build number 1000:

>>> from kvm_utils import KojiPkgSpec
>>> pkg = KojiPkgSpec('1000')

>>> pkg = KojiPkgSpec(build=1000)

Specifying only a subset of packages of build number 1000:

>>> pkg = KojiPkgSpec('1000:kernel,kernel-devel')

>>> pkg = KojiPkgSpec(build=1000,
 subpackages=['kernel', 'kernel-devel'])

Specifying the latest build for the ‘kernel’ package tagged with ‘dist-f14’:

>>> pkg = KojiPkgSpec('dist-f14:kernel')

>>> pkg = KojiPkgSpec(tag='dist-f14', package='kernel')

Specifying the ‘kernel’ package using the default tag:

>>> kvm_utils.set_default_koji_tag('dist-f14')
>>> pkg = KojiPkgSpec('kernel')

>>> pkg = KojiPkgSpec(package='kernel')

Specifying the ‘kernel’ package using the default tag:

>>> kvm_utils.set_default_koji_tag('dist-f14')
>>> pkg = KojiPkgSpec('kernel')

>>> pkg = KojiPkgSpec(package='kernel')

If you do not specify a default tag, and give a package name without an
explicit tag, your package specification is considered invalid:

>>> print kvm_utils.get_default_koji_tag()
None
>>> print kvm_utils.KojiPkgSpec('kernel').is_valid()
False

>>> print kvm_utils.KojiPkgSpec(package='kernel').is_valid()
False

	
SEP = ':'

	

	
describe()

	Describe this package specification, in a human friendly way

	Returns:	package specification description

	
describe_invalid()

	Describes why this is not valid, in a human friendly way

	
is_valid()

	Checks if this package specification is valid.

Being valid means that it has enough and not conflicting information.
It does not validate that the packages specified actually existe on
the Koji server.

	Returns:	True or False

	
parse(text)

	Parses a textual representation of a package specification

	Parameters:	text (string [https://docs.python.org/2/library/string.html#module-string]) – textual representation of a package in koji

	
to_text()

	Return the textual representation of this package spec

The output should be consumable by parse() and produce the same
package specification.

We find that it’s acceptable to put the currently set default tag
as the package explicit tag in the textual definition for completeness.

	Returns:	package specification in a textual representation

	
class autotest.client.shared.utils_koji.KojiScratchPkgSpec(text='', user=None, task=None, subpackages=[])

	Bases: object [https://docs.python.org/2/library/functions.html#object]

A package specification syntax parser for Koji scratch builds

This holds information on user, task and subpackages to be fetched
from koji and possibly installed (features external do this class).

New objects can be created either by providing information in the textual
format or by using the actual parameters for user, task and subpackages.
The textual format is useful for command line interfaces and configuration
files, while using parameters is better for using this in a programatic
fashion.

This package definition has a special behaviour: if no subpackages are
specified, all packages of the chosen architecture (plus noarch packages)
will match.

The following sets of examples are interchangeable. Specifying all packages
from a scratch build (whose task id is 1000) sent by user jdoe:

>>> from kvm_utils import KojiScratchPkgSpec
>>> pkg = KojiScratchPkgSpec('jdoe:1000')

>>> pkg = KojiScratchPkgSpec(user=jdoe, task=1000)

Specifying some packages from a scratch build whose task id is 1000, sent
by user jdoe:

>>> pkg = KojiScratchPkgSpec('jdoe:1000:kernel,kernel-devel')

>>> pkg = KojiScratchPkgSpec(user=jdoe, task=1000,
 subpackages=['kernel', 'kernel-devel'])

	
SEP = ':'

	

	
parse(text)

	Parses a textual representation of a package specification

	Parameters:	text (string [https://docs.python.org/2/library/string.html#module-string]) – textual representation of a package in koji

	
class autotest.client.shared.utils_koji.RPMFileNameInfo(filename)

	Simple parser for RPM based on information present on the filename itself

	
get_arch()

	Returns just the architecture as present on the RPM filename

	
get_filename_without_arch()

	Returns the filename without the architecture

This also excludes the RPM suffix, that is, removes the leading arch
and RPM suffix.

	
get_filename_without_suffix()

	Returns the filename without the default RPM suffix

	
get_nvr_info()

	Returns a dictionary with the name, version and release components

If koji is not installed, this returns None

	
autotest.client.shared.utils_koji.get_default_koji_tag()

	

	
autotest.client.shared.utils_koji.set_default_koji_tag(tag)

	Sets the default tag that will be used

utils_memory Module

	
autotest.client.shared.utils_memory.drop_caches()

	Writes back all dirty pages to disk and clears all the caches.

	
autotest.client.shared.utils_memory.freememtotal()

	

	
autotest.client.shared.utils_memory.get_buddy_info(chunk_sizes, nodes='all', zones='all')

	Get the fragement status of the host. It use the same method
to get the page size in buddyinfo.
2^chunk_size * page_size
The chunk_sizes can be string make up by all orders that you want to check
splited with blank or a mathematical expression with ‘>’, ‘<’ or ‘=’.
For example:
The input of chunk_size could be: “0 2 4”
And the return will be: {‘0’: 3, ‘2’: 286, ‘4’: 687}
if you are using expression: “>=9”
the return will be: {‘9’: 63, ‘10’: 225}

	Parameters:	
	chunk_size (string [https://docs.python.org/2/library/string.html#module-string]) – The order number shows in buddyinfo. This is not
the real page size.

	nodes (string [https://docs.python.org/2/library/string.html#module-string]) – The numa node that you want to check. Default value is all

	zones (string [https://docs.python.org/2/library/string.html#module-string]) – The memory zone that you want to check. Default value is all

	Returns:	A dict using the chunk_size as the keys

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	
autotest.client.shared.utils_memory.get_huge_page_size()

	

	
autotest.client.shared.utils_memory.get_num_huge_pages()

	

	
autotest.client.shared.utils_memory.memtotal()

	

	
autotest.client.shared.utils_memory.node_size()

	

	
autotest.client.shared.utils_memory.numa_nodes()

	

	
autotest.client.shared.utils_memory.read_from_meminfo(key)

	

	
autotest.client.shared.utils_memory.read_from_numa_maps(pid, key)

	Get the process numa related info from numa_maps. This function
only use to get the numbers like anon=1.

	Parameters:	
	pid (String) – Process id

	key (String) – The item you want to check from numa_maps

	Returns:	A dict using the address as the keys

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	
autotest.client.shared.utils_memory.read_from_smaps(pid, key)

	Get specific item value from the smaps of a process include all sections.

	Parameters:	
	pid (String) – Process id

	key (String) – The item you want to check from smaps

	Returns:	The value of the item in kb

	Return type:	int [https://docs.python.org/2/library/functions.html#int]

	
autotest.client.shared.utils_memory.read_from_vmstat(key)

	Get specific item value from vmstat

	Parameters:	key (String) – The item you want to check from vmstat

	Returns:	The value of the item

	Return type:	int [https://docs.python.org/2/library/functions.html#int]

	
autotest.client.shared.utils_memory.rounded_memtotal()

	

	
autotest.client.shared.utils_memory.set_num_huge_pages(num)

	

version Module

Based on work from Douglas Creager <dcreager@dcreager.net>

Gets the current version number. If possible, this is the
output of “git describe”, modified to conform to the versioning
scheme that setuptools uses. If “git describe” returns an error
(most likely because we’re in an unpacked copy of a release tarball,
rather than in a git working copy), then we fall back on reading the
contents of the RELEASE-VERSION file.

To use this script, simply import it your setup.py file, and use the
results of get_version() as your package version:

from autotest.client.shared import version

	setup(

	version=get_version(),
.
.
.

)

This will automatically update the RELEASE-VERSION file, if
necessary. Note that the RELEASE-VERSION file should not be
checked into git; please add it to your top-level .gitignore file.

You’ll probably want to distribute the RELEASE-VERSION file in your
sdist tarballs; to do this, just create a MANIFEST.in file that
contains the following line:

include RELEASE-VERSION

	
autotest.client.shared.version.get_version(abbrev=4)

	

Subpackages

	backports Package
	backports Package

	Subpackages
	collections Package
	collections Package

	OrderedDict Module

	defaultdict Module

	namedtuple Module

	simplejson Package
	simplejson Package

	decoder Module

	encoder Module

	ordered_dict Module

	scanner Module

	tool Module

	hosts Package
	hosts Package

	base_classes Module

	common Module

	test_utils Package
	config_change_validation Module

	functools_24 Module

	mock Module

	unittest Module

backports Package

backports Package

This module contains backported functions that are not present on Python 2.4
but are standard in more recent versions.

	
autotest.client.shared.backports.all(iterable)

	From http://stackoverflow.com/questions/3785433/python-backports-for-some-methods
:codeauthor: Tim Pietzcker http://stackoverflow.com/users/20670/tim-pietzcker
licensed under cc-wiki with attribution required

	
autotest.client.shared.backports.any(iterable)

	From http://stackoverflow.com/questions/3785433/python-backports-for-some-methods
:codeauthor: Tim Pietzcker http://stackoverflow.com/users/20670/tim-pietzcker
licensed under cc-wiki with attribution required

	
autotest.client.shared.backports.bin(number)

	Adapted from http://code.activestate.com/recipes/576847/
:codeauthor: Vishal Sapre
:license: MIT

A foolishly simple look-up method of getting binary string from an integer
This happens to be faster than all other ways!!!

	
autotest.client.shared.backports.next(*args)

	Retrieve the next item from the iterator by calling its next() method.
If default is given, it is returned if the iterator is exhausted,
otherwise StopIteration is raised.
New in version 2.6.

	Parameters:	
	iterator (iterator) – the iterator

	default (object [https://docs.python.org/2/library/functions.html#object]) – the value to return if the iterator raises StopIteration

	Returns:	The object returned by iterator.next()

	Return type:	object [https://docs.python.org/2/library/functions.html#object]

Subpackages

	collections Package
	collections Package

	OrderedDict Module

	defaultdict Module

	namedtuple Module

	simplejson Package
	simplejson Package

	decoder Module

	encoder Module

	ordered_dict Module

	scanner Module

	tool Module

collections Package

collections [https://docs.python.org/2/library/collections.html#module-collections] Package

OrderedDict Module

Backport of OrderedDict() class that runs on Python 2.4, 2.5, 2.6, 2.7 and
pypy. Passes Python2.7’s test suite and incorporates all the latest updates.

Obtained from:
http://code.activestate.com/recipes/576693-ordered-dictionary-for-py24/

	
class autotest.client.shared.backports.collections.OrderedDict.OrderedDict(*args, **kwds)

	Bases: dict [https://docs.python.org/2/library/stdtypes.html#dict]

Dictionary that remembers insertion order

http://code.activestate.com/recipes/576693-ordered-dictionary-for-py24/
:codeauthor: Raymond Hettinger
:license: MIT

	
clear() → None. Remove all items from od.

	

	
copy() → a shallow copy of od

	

	
classmethod fromkeys(S[, v]) → New ordered dictionary with keys from S

	and values equal to v (which defaults to None).

	
items() → list of (key, value) pairs in od

	

	
iteritems()

	od.iteritems -> an iterator over the (key, value) items in od

	
iterkeys() → an iterator over the keys in od

	

	
itervalues()

	od.itervalues -> an iterator over the values in od

	
keys() → list of keys in od

	

	
pop(k[, d]) → v, remove specified key and return the corresponding

	value.

If key is not found, d is returned if given, otherwise KeyError is
raised.

	
popitem() → (k, v), return and remove a (key, value) pair.

	Pairs are returned in LIFO order if last is true or FIFO order if false.

	
setdefault(k[, d]) → od.get(k,d), also set od[k]=d if k not in od

	

	
update(E, **F) → None. Update od from dict/iterable E and F.

	If E is a dict instance, does: for k in E: od[k] = E[k]
If E has a .keys() method, does: for k in E.keys(): od[k] = E[k]
Or if E is an iterable of items, does: for k, v in E: od[k] = v
In either case, this is followed by: for k, v in F.items(): od[k] = v

	
values() → list of values in od

	

	
viewitems() → a set-like object providing a view on od's items

	

	
viewkeys() → a set-like object providing a view on od's keys

	

	
viewvalues() → an object providing a view on od's values

	

defaultdict Module

Backport of the defaultdict module, obtained from:
http://code.activestate.com/recipes/523034-emulate-collectionsdefaultdict/

	
class autotest.client.shared.backports.collections.defaultdict.defaultdict(default_factory=None, *a, **kw)

	Bases: dict [https://docs.python.org/2/library/stdtypes.html#dict]

collections.defaultdict is a handy shortcut added in Python 2.5 which can
be emulated in older versions of Python. This recipe tries to backport
defaultdict exactly and aims to be safe to subclass and extend without
worrying if the base class is in C or is being emulated.

http://code.activestate.com/recipes/523034-emulate-collectionsdefaultdict/
:codeauthor: Jason Kirtland
:license: PSF

Changes:
* replaced self.items() with self.iteritems() to fix Pickle bug as
recommended by Aaron Lav
* reformated with autopep8

	
copy()

	

namedtuple Module

This module contains a backport for collections.namedtuple obtained from
http://code.activestate.com/recipes/500261-named-tuples/

	
autotest.client.shared.backports.collections.namedtuple.namedtuple(typename, field_names, verbose=False, rename=False)

	Returns a new subclass of tuple with named fields.

>>> Point = namedtuple('Point', 'x y')
>>> Point.__doc__ # docstring for the new class
'Point(x, y)'
>>> p = Point(11, y=22) # instantiate with positional args or keywords
>>> p[0] + p[1] # indexable like a plain tuple
33
>>> x, y = p # unpack like a regular tuple
>>> x, y
(11, 22)
>>> p.x + p.y # fields also accessible by name
33
>>> d = p._asdict() # convert to a dictionary
>>> d['x']
11
>>> Point(**d) # convert from a dictionary
Point(x=11, y=22)
>>> p._replace(x=100) # _replace() is like str.replace() but targets named fields
Point(x=100, y=22)

http://code.activestate.com/recipes/500261-named-tuples/
:codeauthor: Raymond Hettinger
:license: PSF

Changes:
* autopep8 reformatting

simplejson Package

simplejson Package

decoder Module

encoder Module

ordered_dict Module

scanner Module

tool Module

hosts Package

hosts Package

This is a convenience module to import all available types of hosts.

Implementation details:
You should ‘import hosts’ instead of importing every available host module.

base_classes Module

This module defines the base classes for the Host hierarchy.

Implementation details:
You should import the “hosts” package instead of importing each type of host.

Host: a machine on which you can run programs

	
class autotest.client.shared.hosts.base_classes.Host(*args, **dargs)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

This class represents a machine on which you can run programs.

It may be a local machine, the one autoserv is running on, a remote
machine or a virtual machine.

Implementation details:
This is an abstract class, leaf subclasses must implement the methods
listed here. You must not instantiate this class but should
instantiate one of those leaf subclasses.

When overriding methods that raise NotImplementedError, the leaf class
is fully responsible for the implementation and should not chain calls
to super. When overriding methods that are a NOP in Host, the subclass
should chain calls to super(). The criteria for fitting a new method into
one category or the other should be:

	If two separate generic implementations could reasonably be
concatenated, then the abstract implementation should pass and
subclasses should chain calls to super.

	If only one class could reasonably perform the stated function
(e.g. two separate run() implementations cannot both be executed)
then the method should raise NotImplementedError in Host, and
the implementor should NOT chain calls to super, to ensure that
only one implementation ever gets executed.

	
DEFAULT_REBOOT_TIMEOUT = 1800

	

	
HARDWARE_REPAIR_REQUEST_THRESHOLD = 4

	

	
HOURS_TO_WAIT_FOR_RECOVERY = 2.5

	

	
WAIT_DOWN_REBOOT_TIMEOUT = 840

	

	
WAIT_DOWN_REBOOT_WARNING = 540

	

	
check_diskspace(path, gb)

	Raises an error if path does not have at least gb GB free.

:param path The path to check for free disk space.
:param gb A floating point number to compare with a granularity

of 1 MB.

1000 based SI units are used.

:raise AutoservDiskFullHostError if path has less than gb GB free.

	
check_partitions(root_part, filter_func=None)

	Compare the contents of /proc/partitions with those of
/proc/mounts and raise exception in case unmounted partitions are found

root_part: in Linux /proc/mounts will never directly mention the root
partition as being mounted on / instead it will say that /dev/root is
mounted on /. Thus require this argument to filter out the root_part
from the ones checked to be mounted

filter_func: unnary predicate for additional filtering out of
partitions required to be mounted

Raise: error.AutoservHostError if unfiltered unmounted partition found

	
cleanup()

	

	
cleanup_kernels(boot_dir='/boot')

	Remove any kernel image and associated files (vmlinux, system.map,
modules) for any image found in the boot directory that is not
referenced by entries in the bootloader configuration.

	Parameters:	boot_dir – boot directory path string, default ‘/boot’

	
close()

	

	
disable_ipfilters()

	Allow all network packets in and out of the host.

	
enable_ipfilters()

	Re-enable the IP filters disabled from disable_ipfilters()

	
erase_dir_contents(path, ignore_status=True, timeout=3600)

	Empty a given directory path contents.

	
get_arch()

	Get the hardware architecture of the remote machine.

	
get_autodir()

	

	
get_boot_id(timeout=60)

	Get a unique ID associated with the current boot.

Should return a string with the semantics such that two separate
calls to Host.get_boot_id() return the same string if the host did
not reboot between the two calls, and two different strings if it
has rebooted at least once between the two calls.

:param timeout The number of seconds to wait before timing out.

	Returns:	A string unique to this boot or None if not available.

	
get_cmdline()

	Get the kernel command line of the remote machine.

	
get_file(source, dest, delete_dest=False)

	

	
get_kernel_ver()

	Get the kernel version of the remote machine.

	
get_meminfo()

	Get the kernel memory info (/proc/meminfo) of the remote machine
and return a dictionary mapping the various statistics.

	
get_num_cpu()

	Get the number of CPUs in the host according to /proc/cpuinfo.

	
get_open_func(use_cache=True)

	Defines and returns a function that may be used instead of built-in
open() to open and read files. The returned function is implemented
by using self.run(‘cat <file>’) and may cache the results for the same
filename.

	:param use_cache Cache results of self.run(‘cat <filename>’) for the

	same filename

	Returns:	a function that can be used instead of built-in open()

	
get_tmp_dir()

	

	
get_wait_up_processes()

	Gets the list of local processes to wait for in wait_up.

	
install(installableObject)

	

	
is_shutting_down()

	Indicates is a machine is currently shutting down.

	
is_up()

	

	
job = None

	

	
list_files_glob(glob)

	Get a list of files on a remote host given a glob pattern path.

	
log_kernel()

	Helper method for logging kernel information into the status logs.
Intended for cases where the “current” kernel is not really defined
and we want to explicitly log it. Does nothing if this host isn’t
actually associated with a job.

	
log_reboot(reboot_func)

	Decorator for wrapping a reboot in a group for status
logging purposes. The reboot_func parameter should be an actual
function that carries out the reboot.

	
machine_install()

	

	
path_exists(path)

	Determine if path exists on the remote machine.

	
reboot()

	

	
reboot_followup(*args, **dargs)

	

	
reboot_setup(*args, **dargs)

	

	
record(*args, **dargs)

	Helper method for recording status logs against Host.job that
silently becomes a NOP if Host.job is not available. The args and
dargs are passed on to Host.job.record unchanged.

	
repair_filesystem_only()

	perform file system repairs only

	
repair_full()

	

	
repair_full_disk(mountpoint)

	

	
repair_software_only()

	perform software repairs only

	
repair_with_protection(protection_level)

	Perform the maximal amount of repair within the specified
protection level.

	Parameters:	protection_level – the protection level to use for limiting
repairs, a host_protections.Protection

	
request_hardware_repair()

	Should somehow request (send a mail?) for hardware repairs on
this machine. The implementation can either return by raising the
special error.AutoservHardwareRepairRequestedError exception or can
try to wait until the machine is repaired and then return normally.

	
run(command, timeout=3600, ignore_status=False, stdout_tee=<object object>, stderr_tee=<object object>, stdin=None, args=())

	Run a command on this host.

	Parameters:	
	command – the command line string

	timeout – time limit in seconds before attempting to
kill the running process. The run() function
will take a few seconds longer than ‘timeout’
to complete if it has to kill the process.

	ignore_status – do not raise an exception, no matter
what the exit code of the command is.

	stdout_tee/stderr_tee – where to tee the stdout/stderr

	stdin – stdin to pass (a string) to the executed command

	args – sequence of strings to pass as arguments to command by
quoting them in ” and escaping their contents if necessary

	Returns:	a utils.CmdResult object

	Raises:	AutotestHostRunError – the exit code of the command execution
was not 0 and ignore_status was not enabled

	
run_output(command, *args, **dargs)

	

	
send_file(source, dest, delete_dest=False)

	

	
set_autodir()

	

	
setup()

	

	
start_loggers()

	Called to start continuous host logging.

	
stop_loggers()

	Called to stop continuous host logging.

	
symlink_closure(paths)

	Given a sequence of path strings, return the set of all paths that
can be reached from the initial set by following symlinks.

	Parameters:	paths – sequence of path strings.

	Returns:	a sequence of path strings that are all the unique paths that
can be reached from the given ones after following symlinks.

	
sysrq_reboot()

	

	
verify()

	

	
verify_connectivity()

	

	
verify_hardware()

	

	
verify_software()

	

	
wait_down(timeout=None, warning_timer=None, old_boot_id=None)

	

	
wait_for_restart(timeout=1800, down_timeout=840, down_warning=540, log_failure=True, old_boot_id=None, **dargs)

	Wait for the host to come back from a reboot. This is a generic
implementation based entirely on wait_up and wait_down.

	
wait_up(timeout=None)

	

common Module

test_utils Package

config_change_validation Module

Module for testing config file changes.

	author:	Kristof Katus and Plamen Dimitrov

	copyright:	Intra2net AG 2012

@license: GPL v2

	
autotest.client.shared.test_utils.config_change_validation.assert_config_change(actual_result, expected_result)

	Wrapper of the upper method returning boolean true if no config changes
were detected.

	
autotest.client.shared.test_utils.config_change_validation.assert_config_change_dict(actual_result, expected_result)

	Calculates unexpected line changes.

The arguments actual_result and expected_results are of
the same data structure type: Dict[file_path] –> (adds, removes),
where adds = [added_line, ...] and removes = [removed_line, ...].

The return value has the following structure:
Dict[file_path] –> (unexpected_adds,

not_present_adds,
unexpected_removes,
not_present_removes)

	
autotest.client.shared.test_utils.config_change_validation.del_temp_file_copies(file_paths)

	Deletes all the provided files

	
autotest.client.shared.test_utils.config_change_validation.extract_config_changes(file_paths, compared_file_paths=[])

	Extracts diff information based on the new and
temporarily saved old config files

Returns a dictionary of file path and corresponding
diff information key-value pairs.

	
autotest.client.shared.test_utils.config_change_validation.get_temp_file_path(file_path)

	Generates a temporary filename

	
autotest.client.shared.test_utils.config_change_validation.make_temp_file_copies(file_paths)

	Creates temporary copies of the provided files

	
autotest.client.shared.test_utils.config_change_validation.parse_unified_diff_output(lines)

	Parses the unified diff output of two files

Returns a pair of adds and removes, where each is a list of trimmed lines

	
autotest.client.shared.test_utils.config_change_validation.print_change_diffs(change_diffs)

	Pretty prints the output of the evaluate_config_changes function

functools_24 Module

	
autotest.client.shared.test_utils.functools_24.compose(*args)

	

	
autotest.client.shared.test_utils.functools_24.fastcut(*sargs, **skw)

	

mock Module

	
exception autotest.client.shared.test_utils.mock.CheckPlaybackError

	Bases: exceptions.Exception [https://docs.python.org/2/library/exceptions.html#exceptions.Exception]

Raised when mock playback does not match recorded calls.

	
class autotest.client.shared.test_utils.mock.SaveDataAfterCloseStringIO(buf='')

	Bases: StringIO.StringIO [https://docs.python.org/2/library/stringio.html#StringIO.StringIO]

Saves the contents in a final_data property when close() is called.

Useful as a mock output file object to test both that the file was
closed and what was written.

	Properties:

	
	final_data: Set to the StringIO’s getvalue() data when close() is

	called. None if close() has not been called.

	
close()

	

	
final_data = None

	

	
exception autotest.client.shared.test_utils.mock.StubNotFoundError

	Bases: exceptions.Exception [https://docs.python.org/2/library/exceptions.html#exceptions.Exception]

Raised when god is asked to unstub an attribute that was not stubbed

	
class autotest.client.shared.test_utils.mock.anything_comparator

	Bases: autotest.client.shared.test_utils.mock.argument_comparator

	
is_satisfied_by(parameter)

	

	
class autotest.client.shared.test_utils.mock.argument_comparator

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	
is_satisfied_by(parameter)

	

	
class autotest.client.shared.test_utils.mock.base_mapping(symbol, return_obj, *args, **dargs)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	
match(*args, **dargs)

	

	
class autotest.client.shared.test_utils.mock.equality_comparator(value)

	Bases: autotest.client.shared.test_utils.mock.argument_comparator

	
is_satisfied_by(parameter)

	

	
class autotest.client.shared.test_utils.mock.function_any_args_mapping(symbol, return_val, *args, **dargs)

	Bases: autotest.client.shared.test_utils.mock.function_mapping

A mock function mapping that doesn’t verify its arguments.

	
match(*args, **dargs)

	

	
class autotest.client.shared.test_utils.mock.function_mapping(symbol, return_val, *args, **dargs)

	Bases: autotest.client.shared.test_utils.mock.base_mapping

	
and_raises(error)

	

	
and_return(return_obj)

	

	
class autotest.client.shared.test_utils.mock.is_instance_comparator(cls)

	Bases: autotest.client.shared.test_utils.mock.argument_comparator

	
is_satisfied_by(parameter)

	

	
class autotest.client.shared.test_utils.mock.is_string_comparator

	Bases: autotest.client.shared.test_utils.mock.argument_comparator

	
is_satisfied_by(parameter)

	

	
class autotest.client.shared.test_utils.mock.mask_function(symbol, original_function, default_return_val=None, record=None, playback=None)

	Bases: autotest.client.shared.test_utils.mock.mock_function

	
run_original_function(*args, **dargs)

	

	
class autotest.client.shared.test_utils.mock.mock_class(cls, name, default_ret_val=None, record=None, playback=None)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	
class autotest.client.shared.test_utils.mock.mock_function(symbol, default_return_val=None, record=None, playback=None)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	
expect_any_call()

	Like expect_call but don’t give a hoot what arguments are passed.

	
expect_call(*args, **dargs)

	

	
class autotest.client.shared.test_utils.mock.mock_god(debug=False, fail_fast=True, ut=None)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	
NONEXISTENT_ATTRIBUTE = <object object>

	

	
check_playback()

	Report any errors that were encounterd during calls
to __method_playback().

	
create_mock_class(cls, name, default_ret_val=None)

	Given something that defines a namespace cls (class, object,
module), and a (hopefully unique) name, will create a
mock_class object with that name and that possesses all
the public attributes of cls. default_ret_val sets the
default_ret_val on all methods of the cls mock.

	
create_mock_class_obj(cls, name, default_ret_val=None)

	

	
create_mock_function(symbol, default_return_val=None)

	create a mock_function with name symbol and default return
value of default_ret_val.

	
mock_io()

	Mocks and saves the stdout & stderr output

	
mock_up(obj, name, default_ret_val=None)

	Given an object (class instance or module) and a registration
name, then replace all its methods with mock function objects
(passing the orignal functions to the mock functions).

	
set_fail_fast(fail_fast)

	

	
stub_class(namespace, symbol)

	

	
stub_class_method(cls, symbol)

	

	
stub_function(namespace, symbol)

	

	
stub_function_to_return(namespace, symbol, object_to_return)

	Stub out a function with one that always returns a fixed value.

:param namespace The namespace containing the function to stub out.
:param symbol The attribute within the namespace to stub out.
:param object_to_return The value that the stub should return whenever

it is called.

	
stub_with(namespace, symbol, new_attribute)

	

	
unmock_io()

	Restores the stdout & stderr, and returns both
output strings

	
unstub(namespace, symbol)

	

	
unstub_all()

	

	
class autotest.client.shared.test_utils.mock.regex_comparator(pattern, flags=0)

	Bases: autotest.client.shared.test_utils.mock.argument_comparator

	
is_satisfied_by(parameter)

	

unittest [https://docs.python.org/2/library/unittest.html#module-unittest] Module

Python unit testing framework, based on Erich Gamma’s JUnit and Kent Beck’s
Smalltalk testing framework.

This module contains the core framework classes that form the basis of
specific test cases and suites (TestCase, TestSuite etc.), and also a
text-based utility class for running the tests and reporting the results

(TextTestRunner).

Simple usage:

import unittest

	class IntegerArithmenticTestCase(unittest.TestCase):

	
	def testAdd(self): ## test method names begin ‘test*’

	self.assertEqual((1 + 2), 3)
self.assertEqual(0 + 1, 1)

	def testMultiply(self):

	self.assertEqual((0 * 10), 0)
self.assertEqual((5 * 8), 40)

	if __name__ == ‘__main__’:

	unittest.main()

Further information is available in the bundled documentation, and from

http://docs.python.org/library/unittest.html

Copyright (c) 1999-2003 Steve Purcell
Copyright (c) 2003-2009 Python Software Foundation
Copyright (c) 2009 Garrett Cooper
This module is free software, and you may redistribute it and/or modify
it under the same terms as Python itself, so long as this copyright message
and disclaimer are retained in their original form.

IN NO EVENT SHALL THE AUTHOR BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF
THIS CODE, EVEN IF THE AUTHOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

THE AUTHOR SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE CODE PROVIDED HEREUNDER IS ON AN “AS IS” BASIS,
AND THERE IS NO OBLIGATION WHATSOEVER TO PROVIDE MAINTENANCE,
SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Garrett: This module was backported using source from r71263 with fixes noted
in Issue 5771.

	
class autotest.client.shared.test_utils.unittest.TestResult

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Holder for test result information.

Test results are automatically managed by the TestCase and TestSuite
classes, and do not need to be explicitly manipulated by writers of tests.

Each instance holds the total number of tests run, and collections of
failures and errors that occurred among those test runs. The collections
contain tuples of (testcase, exceptioninfo), where exceptioninfo is the
formatted traceback of the error that occurred.

	
addError(test, err)

	Called when an error has occurred. ‘err’ is a tuple of values as
returned by sys.exc_info().

	
addExpectedFailure(test, err)

	Called when an expected failure/error occurred.

	
addFailure(test, err)

	Called when an error has occurred. ‘err’ is a tuple of values as
returned by sys.exc_info().

	
addSkip(test, reason)

	Called when a test is skipped.

	
addSuccess(test)

	Called when a test has completed successfully

	
addUnexpectedSuccess(test)

	Called when a test was expected to fail, but succeed.

	
startTest(test)

	Called when the given test is about to be run

	
stop()

	Indicates that the tests should be aborted

	
stopTest(test)

	Called when the given test has been run

	
wasSuccessful()

	Tells whether or not this result was a success

	
class autotest.client.shared.test_utils.unittest.TestCase(methodName='runTest')

	Bases: object [https://docs.python.org/2/library/functions.html#object]

A class whose instances are single test cases.

By default, the test code itself should be placed in a method named
‘runTest’.

If the fixture may be used for many test cases, create as
many test methods as are needed. When instantiating such a TestCase
subclass, specify in the constructor arguments the name of the test method
that the instance is to execute.

Test authors should subclass TestCase for their own tests. Construction
and deconstruction of the test’s environment (‘fixture’) can be
implemented by overriding the ‘setUp’ and ‘tearDown’ methods respectively.

If it is necessary to override the __init__ method, the base class
__init__ method must always be called. It is important that subclasses
should not change the signature of their __init__ method, since instances
of the classes are instantiated automatically by parts of the framework
in order to be run.

	
addTypeEqualityFunc(typeobj, function)

	Add a type specific assertEqual style function to compare a type.

This method is for use by TestCase subclasses that need to register
their own type equality functions to provide nicer error messages.

	Args:

	
	typeobj: The data type to call this function on when both values

	are of the same type in assertEqual().

	function: The callable taking two arguments and an optional

	msg= argument that raises self.failureException with a
useful error message when the two arguments are not equal.

	
assertAlmostEqual(first, second, places=7, msg=None)

	Fail if the two objects are unequal as determined by their
difference rounded to the given number of decimal places
(default 7) and comparing to zero.

Note that decimal places (from zero) are usually not the same
as significant digits (measured from the most significant digit).

	
assertAlmostEquals(first, second, places=7, msg=None)

	Fail if the two objects are unequal as determined by their
difference rounded to the given number of decimal places
(default 7) and comparing to zero.

Note that decimal places (from zero) are usually not the same
as significant digits (measured from the most significant digit).

	
assertDictContainsSubset(expected, actual, msg=None)

	Checks whether actual is a superset of expected.

	
assertDictEqual(d1, d2, msg=None)

	

	
assertEqual(first, second, msg=None)

	Fail if the two objects are unequal as determined by the ‘==’
operator.

	
assertEquals(first, second, msg=None)

	Fail if the two objects are unequal as determined by the ‘==’
operator.

	
assertFalse(expr, msg=None)

	Fail the test if the expression is true.

	
assertGreater(a, b, msg=None)

	Just like self.assertTrue(a > b), but with a nicer default message.

	
assertGreaterEqual(a, b, msg=None)

	Just like self.assertTrue(a >= b), but with a nicer default message.

	
assertIn(member, container, msg=None)

	Just like self.assertTrue(a in b), but with a nicer default message.

	
assertIs(expr1, expr2, msg=None)

	Just like self.assertTrue(a is b), but with a nicer default message.

	
assertIsNone(obj, msg=None)

	Same as self.assertTrue(obj is None), with a nicer default message.

	
assertIsNot(expr1, expr2, msg=None)

	Just like self.assertTrue(a is not b), but with a nicer default message.

	
assertIsNotNone(obj, msg=None)

	Included for symmetry with assertIsNone.

	
assertLess(a, b, msg=None)

	Just like self.assertTrue(a < b), but with a nicer default message.

	
assertLessEqual(a, b, msg=None)

	Just like self.assertTrue(a <= b), but with a nicer default message.

	
assertListEqual(list1, list2, msg=None)

	A list-specific equality assertion.

	Args:

	list1: The first list to compare.
list2: The second list to compare.
msg: Optional message to use on failure instead of a list of

differences.

	
assertMultiLineEqual(first, second, msg=None)

	Assert that two multi-line strings are equal.

	
assertNotAlmostEqual(first, second, places=7, msg=None)

	Fail if the two objects are equal as determined by their
difference rounded to the given number of decimal places
(default 7) and comparing to zero.

Note that decimal places (from zero) are usually not the same
as significant digits (measured from the most significant digit).

	
assertNotAlmostEquals(first, second, places=7, msg=None)

	Fail if the two objects are equal as determined by their
difference rounded to the given number of decimal places
(default 7) and comparing to zero.

Note that decimal places (from zero) are usually not the same
as significant digits (measured from the most significant digit).

	
assertNotEqual(first, second, msg=None)

	Fail if the two objects are equal as determined by the ‘==’
operator.

	
assertNotEquals(first, second, msg=None)

	Fail if the two objects are equal as determined by the ‘==’
operator.

	
assertNotIn(member, container, msg=None)

	Just like self.assertTrue(a not in b), but with a nicer default message.

	
assertRaises(excClass, callableObj=None, *args, **kwargs)

	Fail unless an exception of class excClass is thrown
by callableObj when invoked with arguments args and keyword
arguments kwargs. If a different type of exception is
thrown, it will not be caught, and the test case will be
deemed to have suffered an error, exactly as for an
unexpected exception.

If called with callableObj omitted or None, will return a
context object used like this:

with self.assertRaises(some_error_class):
 do_something()

	
assertRaisesRegexp(expected_exception, expected_regexp, callable_obj=None, *args, **kwargs)

	Asserts that the message in a raised exception matches a regexp.

	Args:

	expected_exception: Exception class expected to be raised.
expected_regexp: Regexp (re pattern object or string) expected

to be found in error message.

callable_obj: Function to be called.
args: Extra args.
kwargs: Extra kwargs.

	
assertRegexpMatches(text, expected_regex, msg=None)

	

	
assertSameElements(expected_seq, actual_seq, msg=None)

	An unordered sequence specific comparison.

Raises with an error message listing which elements of expected_seq
are missing from actual_seq and vice versa if any.

	
assertSequenceEqual(seq1, seq2, msg=None, seq_type=None)

	An equality assertion for ordered sequences (like lists and tuples).

For the purposes of this function, a valid orderd sequence type is one
which can be indexed, has a length, and has an equality operator.

	Args:

	seq1: The first sequence to compare.
seq2: The second sequence to compare.
seq_type: The expected datatype of the sequences, or None if no

datatype should be enforced.

	msg: Optional message to use on failure instead of a list of

	differences.

	
assertSetEqual(set1, set2, msg=None)

	A set-specific equality assertion.

	Args:

	set1: The first set to compare.
set2: The second set to compare.
msg: Optional message to use on failure instead of a list of

differences.

For more general containership equality, assertSameElements will work
with things other than sets. This uses ducktyping to support
different types of sets, and is optimized for sets specifically
(parameters must support a difference method).

	
assertTrue(expr, msg=None)

	Fail the test unless the expression is true.

	
assertTupleEqual(tuple1, tuple2, msg=None)

	A tuple-specific equality assertion.

	Args:

	tuple1: The first tuple to compare.
tuple2: The second tuple to compare.
msg: Optional message to use on failure instead of a list of

differences.

	
assert_(expr, msg=None)

	Fail the test unless the expression is true.

	
countTestCases()

	

	
debug()

	Run the test without collecting errors in a TestResult

	
defaultTestResult()

	

	
fail(msg=None)

	Fail immediately, with the given message.

	
failIf(*args, **kwargs)

	

	
failIfAlmostEqual(*args, **kwargs)

	

	
failIfEqual(*args, **kwargs)

	

	
failUnless(*args, **kwargs)

	

	
failUnlessAlmostEqual(*args, **kwargs)

	

	
failUnlessEqual(*args, **kwargs)

	

	
failUnlessRaises(*args, **kwargs)

	

	
failureException

	alias of AssertionError

	
id()

	

	
longMessage = False

	

	
run(result=None)

	

	
setUp()

	Hook method for setting up the test fixture before exercising it.

	
shortDescription()

	Returns both the test method name and first line of its docstring.

If no docstring is given, only returns the method name.

This method overrides unittest.TestCase.shortDescription(), which
only returns the first line of the docstring, obscuring the name
of the test upon failure.

	
skipTest(reason)

	Skip this test.

	
tearDown()

	Hook method for deconstructing the test fixture after testing it.

	
class autotest.client.shared.test_utils.unittest.TestSuite(tests=())

	Bases: object [https://docs.python.org/2/library/functions.html#object]

A test suite is a composite test consisting of a number of TestCases.

For use, create an instance of TestSuite, then add test case instances.
When all tests have been added, the suite can be passed to a test
runner, such as TextTestRunner. It will run the individual test cases
in the order in which they were added, aggregating the results. When
subclassing, do not forget to call the base class constructor.

	
addTest(test)

	

	
addTests(tests)

	

	
countTestCases()

	

	
debug()

	Run the tests without collecting errors in a TestResult

	
run(result)

	

	
class autotest.client.shared.test_utils.unittest.ClassTestSuite(tests, class_collected_from)

	Bases: autotest.client.shared.test_utils.unittest.TestSuite

Suite of tests derived from a single TestCase class.

	
id()

	

	
run(result)

	

	
shortDescription()

	

	
class autotest.client.shared.test_utils.unittest.TextTestRunner(stream=<open file '<stderr>', mode 'w'>, descriptions=1, verbosity=1)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

A test runner class that displays results in textual form.

It prints out the names of tests as they are run, errors as they
occur, and a summary of the results at the end of the test run.

	
run(test)

	Run the given test case or test suite.

	
class autotest.client.shared.test_utils.unittest.TestLoader

	Bases: object [https://docs.python.org/2/library/functions.html#object]

This class is responsible for loading tests according to various criteria
and returning them wrapped in a TestSuite

	
classSuiteClass

	alias of ClassTestSuite

	
getTestCaseNames(testCaseClass)

	Return a sorted sequence of method names found within testCaseClass

	
loadTestsFromModule(module)

	Return a suite of all tests cases contained in the given module

	
loadTestsFromName(name, module=None)

	Return a suite of all tests cases given a string specifier.

The name may resolve either to a module, a test case class, a
test method within a test case class, or a callable object which
returns a TestCase or TestSuite instance.

The method optionally resolves the names relative to a given module.

	
loadTestsFromNames(names, module=None)

	Return a suite of all tests cases found using the given sequence
of string specifiers. See ‘loadTestsFromName()’.

	
loadTestsFromTestCase(testCaseClass)

	Return a suite of all tests cases contained in testCaseClass

	
sortTestMethodsUsing()

	cmp(x, y) -> integer

Return negative if x<y, zero if x==y, positive if x>y.

	
suiteClass

	alias of TestSuite

	
testMethodPrefix = 'test'

	

	
class autotest.client.shared.test_utils.unittest.FunctionTestCase(testFunc, setUp=None, tearDown=None, description=None)

	Bases: autotest.client.shared.test_utils.unittest.TestCase

A test case that wraps a test function.

This is useful for slipping pre-existing test functions into the
unittest framework. Optionally, set-up and tidy-up functions can be
supplied. As with TestCase, the tidy-up (‘tearDown’) function will
always be called if the set-up (‘setUp’) function ran successfully.

	
id()

	

	
runTest()

	

	
setUp()

	

	
shortDescription()

	

	
tearDown()

	

	
autotest.client.shared.test_utils.unittest.main

	alias of TestProgram

	
exception autotest.client.shared.test_utils.unittest.SkipTest

	Bases: exceptions.Exception [https://docs.python.org/2/library/exceptions.html#exceptions.Exception]

Raise this exception in a test to skip it.

Usually you can use TestResult.skip() or one of the skipping decorators
instead of raising this directly.

	
autotest.client.shared.test_utils.unittest.skip(reason)

	Unconditionally skip a test.

	
autotest.client.shared.test_utils.unittest.skipIf(condition, reason)

	Skip a test if the condition is true.

	
autotest.client.shared.test_utils.unittest.skipUnless(condition, reason)

	Skip a test unless the condition is true.

	
autotest.client.shared.test_utils.unittest.expectedFailure(func)

	

	
autotest.client.shared.test_utils.unittest.getTestCaseNames(testCaseClass, prefix, sortUsing=<built-in function cmp>)

	

	
autotest.client.shared.test_utils.unittest.makeSuite(testCaseClass, prefix='test', sortUsing=<built-in function cmp>, suiteClass=<class 'autotest.client.shared.test_utils.unittest.TestSuite'>)

	

	
autotest.client.shared.test_utils.unittest.findTestCases(module, prefix='test', sortUsing=<built-in function cmp>, suiteClass=<class 'autotest.client.shared.test_utils.unittest.TestSuite'>)

	

tools Package

JUnit_api Module

	
class autotest.client.tools.JUnit_api.errorType(message=None, type_=None, valueOf_=None)

	Bases: autotest.client.tools.JUnit_api.GeneratedsSuper

The error message. e.g., if a java exception is thrown, the return
value of getMessage()The type of error that occurred. e.g., if a
java execption is thrown the full class name of the exception.

	
build(node)

	

	
buildAttributes(node, attrs, already_processed)

	

	
buildChildren(child_, node, nodeName_, fromsubclass_=False)

	

	
export(outfile, level, namespace_='', name_='errorType', namespacedef_='')

	

	
exportAttributes(outfile, level, already_processed, namespace_='', name_='errorType')

	

	
exportChildren(outfile, level, namespace_='', name_='errorType', fromsubclass_=False)

	

	
exportLiteral(outfile, level, name_='errorType')

	

	
exportLiteralAttributes(outfile, level, already_processed, name_)

	

	
exportLiteralChildren(outfile, level, name_)

	

	
static factory(*args_, **kwargs_)

	

	
get_message()

	

	
get_type()

	

	
get_valueOf_()

	

	
hasContent_()

	

	
set_message(message)

	

	
set_type(type_)

	

	
set_valueOf_(valueOf_)

	

	
subclass = None

	

	
superclass = None

	

	
class autotest.client.tools.JUnit_api.failureType(message=None, type_=None, valueOf_=None)

	Bases: autotest.client.tools.JUnit_api.GeneratedsSuper

The message specified in the assertThe type of the assert.

	
build(node)

	

	
buildAttributes(node, attrs, already_processed)

	

	
buildChildren(child_, node, nodeName_, fromsubclass_=False)

	

	
export(outfile, level, namespace_='', name_='failureType', namespacedef_='')

	

	
exportAttributes(outfile, level, already_processed, namespace_='', name_='failureType')

	

	
exportChildren(outfile, level, namespace_='', name_='failureType', fromsubclass_=False)

	

	
exportLiteral(outfile, level, name_='failureType')

	

	
exportLiteralAttributes(outfile, level, already_processed, name_)

	

	
exportLiteralChildren(outfile, level, name_)

	

	
static factory(*args_, **kwargs_)

	

	
get_message()

	

	
get_type()

	

	
get_valueOf_()

	

	
hasContent_()

	

	
set_message(message)

	

	
set_type(type_)

	

	
set_valueOf_(valueOf_)

	

	
subclass = None

	

	
superclass = None

	

	
class autotest.client.tools.JUnit_api.propertiesType(property=None)

	Bases: autotest.client.tools.JUnit_api.GeneratedsSuper

	
add_property(value)

	

	
build(node)

	

	
buildAttributes(node, attrs, already_processed)

	

	
buildChildren(child_, node, nodeName_, fromsubclass_=False)

	

	
export(outfile, level, namespace_='', name_='propertiesType', namespacedef_='')

	

	
exportAttributes(outfile, level, already_processed, namespace_='', name_='propertiesType')

	

	
exportChildren(outfile, level, namespace_='', name_='propertiesType', fromsubclass_=False)

	

	
exportLiteral(outfile, level, name_='propertiesType')

	

	
exportLiteralAttributes(outfile, level, already_processed, name_)

	

	
exportLiteralChildren(outfile, level, name_)

	

	
static factory(*args_, **kwargs_)

	

	
get_property()

	

	
hasContent_()

	

	
insert_property(index, value)

	

	
set_property(property)

	

	
subclass = None

	

	
superclass = None

	

	
class autotest.client.tools.JUnit_api.propertyType(name=None, value=None)

	Bases: autotest.client.tools.JUnit_api.GeneratedsSuper

	
build(node)

	

	
buildAttributes(node, attrs, already_processed)

	

	
buildChildren(child_, node, nodeName_, fromsubclass_=False)

	

	
export(outfile, level, namespace_='', name_='propertyType', namespacedef_='')

	

	
exportAttributes(outfile, level, already_processed, namespace_='', name_='propertyType')

	

	
exportChildren(outfile, level, namespace_='', name_='propertyType', fromsubclass_=False)

	

	
exportLiteral(outfile, level, name_='propertyType')

	

	
exportLiteralAttributes(outfile, level, already_processed, name_)

	

	
exportLiteralChildren(outfile, level, name_)

	

	
static factory(*args_, **kwargs_)

	

	
get_name()

	

	
get_value()

	

	
hasContent_()

	

	
set_name(name)

	

	
set_value(value)

	

	
subclass = None

	

	
superclass = None

	

	
class autotest.client.tools.JUnit_api.system_err

	Bases: autotest.client.tools.JUnit_api.GeneratedsSuper

Data that was written to standard error while the test was executed

	
build(node)

	

	
buildAttributes(node, attrs, already_processed)

	

	
buildChildren(child_, node, nodeName_, fromsubclass_=False)

	

	
export(outfile, level, namespace_='', name_='system-err', namespacedef_='')

	

	
exportAttributes(outfile, level, already_processed, namespace_='', name_='system-err')

	

	
exportChildren(outfile, level, namespace_='', name_='system-err', fromsubclass_=False)

	

	
exportLiteral(outfile, level, name_='system-err')

	

	
exportLiteralAttributes(outfile, level, already_processed, name_)

	

	
exportLiteralChildren(outfile, level, name_)

	

	
static factory(*args_, **kwargs_)

	

	
hasContent_()

	

	
subclass = None

	

	
superclass = None

	

	
class autotest.client.tools.JUnit_api.system_out

	Bases: autotest.client.tools.JUnit_api.GeneratedsSuper

Data that was written to standard out while the test was executed

	
build(node)

	

	
buildAttributes(node, attrs, already_processed)

	

	
buildChildren(child_, node, nodeName_, fromsubclass_=False)

	

	
export(outfile, level, namespace_='', name_='system-out', namespacedef_='')

	

	
exportAttributes(outfile, level, already_processed, namespace_='', name_='system-out')

	

	
exportChildren(outfile, level, namespace_='', name_='system-out', fromsubclass_=False)

	

	
exportLiteral(outfile, level, name_='system-out')

	

	
exportLiteralAttributes(outfile, level, already_processed, name_)

	

	
exportLiteralChildren(outfile, level, name_)

	

	
static factory(*args_, **kwargs_)

	

	
hasContent_()

	

	
subclass = None

	

	
superclass = None

	

	
class autotest.client.tools.JUnit_api.testcaseType(classname=None, name=None, time=None, error=None, failure=None)

	Bases: autotest.client.tools.JUnit_api.GeneratedsSuper

Name of the test methodFull class name for the class the test method
is in.Time taken (in seconds) to execute the test

	
build(node)

	

	
buildAttributes(node, attrs, already_processed)

	

	
buildChildren(child_, node, nodeName_, fromsubclass_=False)

	

	
export(outfile, level, namespace_='', name_='testcaseType', namespacedef_='')

	

	
exportAttributes(outfile, level, already_processed, namespace_='', name_='testcaseType')

	

	
exportChildren(outfile, level, namespace_='', name_='testcaseType', fromsubclass_=False)

	

	
exportLiteral(outfile, level, name_='testcaseType')

	

	
exportLiteralAttributes(outfile, level, already_processed, name_)

	

	
exportLiteralChildren(outfile, level, name_)

	

	
static factory(*args_, **kwargs_)

	

	
get_classname()

	

	
get_error()

	

	
get_failure()

	

	
get_name()

	

	
get_time()

	

	
hasContent_()

	

	
set_classname(classname)

	

	
set_error(error)

	

	
set_failure(failure)

	

	
set_name(name)

	

	
set_time(time)

	

	
subclass = None

	

	
superclass = None

	

	
class autotest.client.tools.JUnit_api.testsuite(tests=None, errors=None, name=None, timestamp=None, hostname=None, time=None, failures=None, properties=None, testcase=None, system_out=None, system_err=None, extensiontype_=None)

	Bases: autotest.client.tools.JUnit_api.GeneratedsSuper

Contains the results of exexuting a testsuiteFull class name of the
test for non-aggregated testsuite documents. Class name without
the package for aggregated testsuites documentswhen the test was
executed. Timezone may not be specified.Host on which the tests
were executed. ‘localhost’ should be used if the hostname cannot
be determined.The total number of tests in the suiteThe total
number of tests in the suite that failed. A failure is a test
which the code has explicitly failed by using the mechanisms for
that purpose. e.g., via an assertEqualsThe total number of tests
in the suite that errorrd. An errored test is one that had an
unanticipated problem. e.g., an unchecked throwable; or a
problem with the implementation of the test.Time taken (in
seconds) to execute the tests in the suite

	
add_testcase(value)

	

	
build(node)

	

	
buildAttributes(node, attrs, already_processed)

	

	
buildChildren(child_, node, nodeName_, fromsubclass_=False)

	

	
export(outfile, level, namespace_='', name_='testsuite', namespacedef_='')

	

	
exportAttributes(outfile, level, already_processed, namespace_='', name_='testsuite')

	

	
exportChildren(outfile, level, namespace_='', name_='testsuite', fromsubclass_=False)

	

	
exportLiteral(outfile, level, name_='testsuite')

	

	
exportLiteralAttributes(outfile, level, already_processed, name_)

	

	
exportLiteralChildren(outfile, level, name_)

	

	
static factory(*args_, **kwargs_)

	

	
get_errors()

	

	
get_extensiontype_()

	

	
get_failures()

	

	
get_hostname()

	

	
get_name()

	

	
get_properties()

	

	
get_system_err()

	

	
get_system_out()

	

	
get_testcase()

	

	
get_tests()

	

	
get_time()

	

	
get_timestamp()

	

	
hasContent_()

	

	
insert_testcase(index, value)

	

	
set_errors(errors)

	

	
set_extensiontype_(extensiontype_)

	

	
set_failures(failures)

	

	
set_hostname(hostname)

	

	
set_name(name)

	

	
set_properties(properties)

	

	
set_system_err(system_err)

	

	
set_system_out(system_out)

	

	
set_testcase(testcase)

	

	
set_tests(tests)

	

	
set_time(time)

	

	
set_timestamp(timestamp)

	

	
subclass = None

	

	
superclass = None

	

	
validate_ISO8601_DATETIME_PATTERN(value)

	

	
class autotest.client.tools.JUnit_api.testsuiteType(tests=None, errors=None, name=None, timestamp=None, hostname=None, time=None, failures=None, properties=None, testcase=None, system_out=None, system_err=None, id=None, package=None)

	Bases: autotest.client.tools.JUnit_api.testsuite

Derived from testsuite/@name in the non-aggregated documentsStarts
at ‘0’ for the first testsuite and is incremented by 1 for each
following testsuite

	
build(node)

	

	
buildAttributes(node, attrs, already_processed)

	

	
buildChildren(child_, node, nodeName_, fromsubclass_=False)

	

	
export(outfile, level, namespace_='', name_='testsuiteType', namespacedef_='')

	

	
exportAttributes(outfile, level, already_processed, namespace_='', name_='testsuiteType')

	

	
exportChildren(outfile, level, namespace_='', name_='testsuiteType', fromsubclass_=False)

	

	
exportLiteral(outfile, level, name_='testsuiteType')

	

	
exportLiteralAttributes(outfile, level, already_processed, name_)

	

	
exportLiteralChildren(outfile, level, name_)

	

	
static factory(*args_, **kwargs_)

	

	
get_id()

	

	
get_package()

	

	
hasContent_()

	

	
set_id(id)

	

	
set_package(package)

	

	
subclass = None

	

	
superclass

	alias of testsuite

	
class autotest.client.tools.JUnit_api.testsuites(testsuite=None)

	Bases: autotest.client.tools.JUnit_api.GeneratedsSuper

Contains an aggregation of testsuite results

	
add_testsuite(value)

	

	
build(node)

	

	
buildAttributes(node, attrs, already_processed)

	

	
buildChildren(child_, node, nodeName_, fromsubclass_=False)

	

	
export(outfile, level, namespace_='', name_='testsuites', namespacedef_='')

	

	
exportAttributes(outfile, level, already_processed, namespace_='', name_='testsuites')

	

	
exportChildren(outfile, level, namespace_='', name_='testsuites', fromsubclass_=False)

	

	
exportLiteral(outfile, level, name_='testsuites')

	

	
exportLiteralAttributes(outfile, level, already_processed, name_)

	

	
exportLiteralChildren(outfile, level, name_)

	

	
static factory(*args_, **kwargs_)

	

	
get_testsuite()

	

	
hasContent_()

	

	
insert_testsuite(index, value)

	

	
set_testsuite(testsuite)

	

	
subclass = None

	

	
superclass = None

	

boottool Module

A boottool clone, but written in python and relying mostly on grubby[1].

[1] - http://git.fedorahosted.org/git/?p=grubby.git

	
class autotest.client.tools.boottool.Grubby(path=None, opts=None)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Grubby wrapper

This class calls the grubby binary for most commands, but also
adds some functionality that is not really suited to be included
in int, such as boot-once.

	
SUPPORTED_BOOTLOADERS = ('lilo', 'grub2', 'grub', 'extlinux', 'yaboot', 'elilo')

	

	
add_args(kernel, args)

	Add cmdline arguments for the specified kernel.

	Parameters:	
	kernel – can be a position number (index) or title

	args – argument to be added to the current list of args

	
add_kernel(path, title='autoserv', root=None, args=None, initrd=None, default=False, position='end')

	Add a kernel entry to the bootloader (or replace if one exists
already with the same title).

	Parameters:	
	path – string path to the kernel image file

	title – title of this entry in the bootloader config

	root – string of the root device

	args – string with cmdline args

	initrd – string path to the initrd file

	default – set to True to make this entry the default one
(default False)

	position – where to insert the new entry in the bootloader
config file (default ‘end’, other valid input ‘start’, or
of the title)

	xen_hypervisor – xen hypervisor image file (valid only when
xen mode is enabled)

	
arch_probe()

	Get the system architecture

This is much simpler version then the original boottool version, that
does not attempt to filter the result of the command / system call
that returns the archicture.

	Returns:	string with system archicteture, such as x86_64, ppc64, etc

	
boot_once(title=None)

	Configures the bootloader to boot an entry only once

This is not implemented by grubby, but directly implemented here, via
the ‘boot_once_<bootloader>’ method.

	
boot_once_elilo(entry_index)

	Implements boot once for machines with kernel >= 2.6

This manipulates EFI variables via the interface available at
/sys/firmware/efi/vars

	
boot_once_grub(entry_index)

	Implements the boot once feature for the grub bootloader

	
boot_once_grub2(entry_index)

	Implements the boot once feature for the grub2 bootloader

Caveat: this assumes the default set is of type “saved”, and not a
numeric value.

	
boot_once_yaboot(entry_title)

	Implements the boot once feature for the yaboot bootloader

	
bootloader_probe()

	Get the bootloader name that is detected on this machine

This module performs the same action as client side boottool.py
get_type() method, but with a better name IMHO.

	Returns:	name of detected bootloader

	
default()

	Get the default entry index.

This module performs the same action as client side boottool.py
get_default() method, but with a better name IMHO.

	Returns:	an integer with the the default entry.

	
get_architecture()

	Get the system architecture

This is much simpler version then the original boottool version, that
does not attempt to filter the result of the command / system call
that returns the archicture.

	Returns:	string with system archicteture, such as x86_64, ppc64, etc

	
get_bootloader()

	Get the bootloader name that is detected on this machine

This module performs the same action as client side boottool.py
get_type() method, but with a better name IMHO.

	Returns:	name of detected bootloader

	
get_default()

	Get the default entry index.

This module performs the same action as client side boottool.py
get_default() method, but with a better name IMHO.

	Returns:	an integer with the the default entry.

	
get_default_index()

	Get the default entry index.

This module performs the same action as client side boottool.py
get_default() method, but with a better name IMHO.

	Returns:	an integer with the the default entry.

	
get_default_title()

	Get the default entry title.

Conforms to the client side boottool.py API, but rely directly on
grubby functionality.

	Returns:	a string of the default entry title.

	
get_entries()

	Get all entries information.

	Returns:	a dictionary of index -> entry where entry is a dictionary
of entry information as described for get_entry().

	
get_entry(search_info)

	Get a single bootloader entry information.

NOTE: if entry is “fallback” and bootloader is grub
use index instead of kernel title (“fallback”) as fallback is
a special option in grub

	Parameters:	search_info – can be ‘default’, position number or title

	Returns:	a dictionary of key->value where key is the type of entry
information (ex. ‘title’, ‘args’, ‘kernel’, etc) and value
is the value for that piece of information.

	
get_grubby_version()

	Get the version of grubby that is installed on this machine

	Returns:	tuple with (major, minor) grubby version

	
get_grubby_version_raw()

	Get the version of grubby that is installed on this machine as is

	Returns:	string with raw output from grubby –version

	
get_info(entry='ALL')

	Returns information on a given entry, or all of them if not specified

The information is returned as a set of lines, that match the output
of ‘grubby –info=<entry>’

	Parameters:	entry (string [https://docs.python.org/2/library/string.html#module-string]) – entry description, usually an index starting from 0

	Returns:	set of lines

	
get_info_lines(entry='ALL')

	Returns information on a given entry, or all of them if not specified

The information is returned as a set of lines, that match the output
of ‘grubby –info=<entry>’

	Parameters:	entry (string [https://docs.python.org/2/library/string.html#module-string]) – entry description, usually an index starting from 0

	Returns:	set of lines

	
get_title_for_kernel(path)

	Returns a title for a particular kernel.

	Parameters:	path – path of the kernel image configured in the boot config

	Returns:	if the given kernel path is found it will return a string
with the title for the found entry, otherwise returns None

	
get_titles()

	Get the title of all boot entries.

	Returns:	list with titles of boot entries

	
get_type()

	Get the bootloader name that is detected on this machine

This module performs the same action as client side boottool.py
get_type() method, but with a better name IMHO.

	Returns:	name of detected bootloader

	
grubby_build(topdir, tarball)

	Attempts to build grubby from the source tarball

	
grubby_install(path=None)

	Attempts to install a recent enough version of grubby

	So far tested on:

	
	Fedora 16 x86_64

	Debian 6 x86_64

	SuSE 12.1 x86_64

	RHEL 4 on ia64 (with updated python 2.4)

	RHEL 5 on ia64

	RHEL 6 on ppc64

	
grubby_install_backup(path)

	Backs up the current grubby binary to make room the one we’ll build

	Parameters:	path (string [https://docs.python.org/2/library/string.html#module-string]) – path to the binary that should be backed up

	
grubby_install_fetch_tarball(topdir)

	Fetches and verifies the grubby source tarball

	
grubby_install_patch_makefile()

	Patch makefile, making CFLAGS more forgivable to older toolchains

	
remove_args(kernel, args)

	Removes specified cmdline arguments.

	Parameters:	
	kernel – can be a position number (index) or title

	args – argument to be removed of the current list of args

	
remove_kernel(kernel)

	Removes a specific entry from the bootloader configuration.

	Parameters:	kernel – entry position or entry title.

FIXME: param kernel should also take ‘start’ or ‘end’.

	
set_default(index)

	Sets the given entry number to be the default on every next boot

To set a default only for the next boot, use boot_once() instead.

This module performs the same action as client side boottool.py
set_default() method, but with a better name IMHO.

Note: both –set-default=<kernel> and –set-default-index=<index>
on grubby returns no error when it doesn’t find the kernel or
index. So this method will, until grubby gets fixed, always return
success.

	Parameters:	index – entry index number to set as the default.

	
set_default_by_index(index)

	Sets the given entry number to be the default on every next boot

To set a default only for the next boot, use boot_once() instead.

This module performs the same action as client side boottool.py
set_default() method, but with a better name IMHO.

Note: both –set-default=<kernel> and –set-default-index=<index>
on grubby returns no error when it doesn’t find the kernel or
index. So this method will, until grubby gets fixed, always return
success.

	Parameters:	index – entry index number to set as the default.

	
class autotest.client.tools.boottool.OptionParser(**kwargs)

	Bases: optparse.OptionParser [https://docs.python.org/2/library/optparse.html#optparse.OptionParser]

Command line option parser

Aims to maintain compatibility at the command line level with boottool

	
check_values(opts, args)

	Validate the option the user has supplied

	
option_parser_usage = '%prog [options]'

	

	
opts_get_action(opts)

	Gets the selected action from the parsed opts

	
opts_has_action(opts)

	Checks if (parsed) opts has a first class action

	
class autotest.client.tools.boottool.EfiVar(name, data, guid=None, attributes=None)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Helper class to manipulate EFI firmware variables

This class has no notion of the EFI firmware variables interface, that is,
where it should read from or write to in order to create or delete EFI
variables.

On systems with kernel >= 2.6, that interface is a directory structure
under /sys/firmware/efi/vars.

On systems with kernel <= 2.4, that interface is going to be a directory
structure under /proc/efi/vars. But be advised: this has not been tested
yet on kernels <= 2.4.

	
ATTR_BOOTSERVICE_ACCESS = 2

	

	
ATTR_NON_VOLATILE = 1

	

	
ATTR_RUNTIME_ACCESS = 4

	

	
DEFAULT_ATTRIBUTES = 7

	

	
FMT = '512H16B1L512H1L1I'

	

	
GUID_CONTENT = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

	

	
GUID_FMT = '16B'

	

	
get_data()

	Returns the variable data in a list ready for struct.pack()

	
get_name()

	Returns the variable name in a list ready for struct.pack()

	
get_packed()

	Returns the EFI variable raw data packed by struct.pack()

This data should be written to the appropriate interface to create
an EFI variable

	
class autotest.client.tools.boottool.EfiToolSys

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Interfaces with /sys/firmware/efi/vars provided by the kernel

This interface is present on kernels >= 2.6 with CONFIG_EFI and
CONFIG_EFI_VARS options set.

	
BASE_PATH = '/sys/firmware/efi/vars'

	

	
DEL_VAR = '/sys/firmware/efi/vars/del_var'

	

	
NEW_VAR = '/sys/firmware/efi/vars/new_var'

	

	
check_basic_structure()

	Checks the basic directory structure for the /sys/.../vars interface

	
create_variable(name, data, guid=None, attributes=None)

	Creates a new EFI variable

	Parameters:	
	name (string [https://docs.python.org/2/library/string.html#module-string]) – the name of the variable that will be created

	data (string [https://docs.python.org/2/library/string.html#module-string]) – user data that will populate the variable

	guid (tuple [https://docs.python.org/2/library/functions.html#tuple]) – content for the guid value that composes the full variable
name

	attributes – integer

	attributes – bitwise AND of the EFI attributes this variable will
have set

	
delete_variable(name, data, guid=None, attributes=None)

	Delets an existing EFI variable

	Parameters:	
	name (string [https://docs.python.org/2/library/string.html#module-string]) – the name of the variable that will be deleted

	data (string [https://docs.python.org/2/library/string.html#module-string]) – user data that will populate the variable

	guid (tuple [https://docs.python.org/2/library/functions.html#tuple]) – content for the guid value that composes the full variable
name

	attributes – integer

	attributes – bitwise AND of the EFI attributes this variable will
have set

	
class autotest.client.tools.boottool.EliloConf(path='/etc/elilo.conf')

	Bases: object [https://docs.python.org/2/library/functions.html#object]

A simple parser for elilo configuration file

Has simple features to add and remove global options only, as this is all
we need. grubby takes care of manipulating the boot entries themselves.

	
add_global_option(key, val=None)

	Adds a global option to the updated elilo configuration file

	Parameters:	
	key (string [https://docs.python.org/2/library/string.html#module-string]) – option name

	key – option value or None for options with no values

	Returns:	None

	
get_updated_content()

	Returns the config file content with options to add and remove applied

	
keyval_to_line(keyval)

	Transforms a tuple into a text line suitable for the config file

	Parameters:	keyval (tuple [https://docs.python.org/2/library/functions.html#tuple]) – a tuple containing key and value

	Returns:	a text line suitable for the config file

	
line_to_keyval(line)

	Transforms a text line from the configuration file into a tuple

	Parameters:	line (string [https://docs.python.org/2/library/string.html#module-string]) – line of text from the configuration file

	Returns:	a tuple with key and value

	
matches_global_option_to_add(line)

	Utility method to check if option is to be added

	Parameters:	line (string [https://docs.python.org/2/library/string.html#module-string]) – line of text from the configuration file

	Returns:	True or False

	
matches_global_option_to_remove(line)

	Utility method to check if option is to be removed

	Parameters:	line (string [https://docs.python.org/2/library/string.html#module-string]) – line of text from the configuration file

	Returns:	True or False

	
remove_global_option(key, val=None)

	Removes a global option to the updated elilo configuration file

	Parameters:	
	key (string [https://docs.python.org/2/library/string.html#module-string]) – option name

	key – option value or None for options with no values

	Returns:	None

	
update()

	Writes the updated content to the configuration file

	
autotest.client.tools.boottool.find_executable(executable, favorite_path=None)

	Returns whether the system has a given executable

	Parameters:	executable (string [https://docs.python.org/2/library/string.html#module-string]) – the name of a file that can be read and executed

	
autotest.client.tools.boottool.parse_entry(entry_str, separator='=')

	Parse entry as returned by boottool.

	Parameters:	entry_str – one entry information as returned by boottool

	Returns:	dictionary of key -> value where key is the string before
the first ”:” in an entry line and value is the string after
it

common Module

crash_handler Module

Simple crash handling application for autotest

	copyright:	Red Hat Inc 2009

	author:	Lucas Meneghel Rodrigues <lmr@redhat.com>

	
autotest.client.tools.crash_handler.gdb_report(path)

	Use GDB to produce a report with information about a given core.

	Parameters:	path – Path to core file.

	
autotest.client.tools.crash_handler.generate_random_string(length)

	Return a random string using alphanumeric characters.

@length: length of the string that will be generated.

	
autotest.client.tools.crash_handler.get_info_from_core(path)

	Reads a core file and extracts a dictionary with useful core information.

Right now, the only information extracted is the full executable name.

	Parameters:	path – Path to core file.

	
autotest.client.tools.crash_handler.get_parent_pid(pid)

	Returns the parent PID for a given PID, converted to an integer.

	Parameters:	pid – Process ID.

	
autotest.client.tools.crash_handler.get_results_dir_list(pid, core_dir_basename)

	Get all valid output directories for the core file and the report. It works
by inspecting files created by each test on /tmp and verifying if the
PID of the process that crashed is a child or grandchild of the autotest
test process. If it can’t find any relationship (maybe a daemon that died
during a test execution), it will write the core file to the debug dirs
of all tests currently being executed. If there are no active autotest
tests at a particular moment, it will return a list with [‘/tmp’].

	Parameters:	
	pid – PID for the process that generated the core

	core_dir_basename – Basename for the directory that will hold both
the core dump and the crash report.

	
autotest.client.tools.crash_handler.write_cores(core_data, dir_list)

	Write core files to all directories, optionally providing reports.

	Parameters:	
	core_data – Contents of the core file.

	dir_list – List of directories the cores have to be written.

	report – Whether reports are to be generated for those core files.

	
autotest.client.tools.crash_handler.write_to_file(filename, data, report=False)

	Write contents to a given file path specified. If not specified, the file
will be created.

	Parameters:	
	file_path – Path to a given file.

	data – File contents.

	report – Whether we’ll use GDB to get a backtrace report of the
file.

process_metrics Module

Program that parses autotest metrics results and prints them to stdout,
so that the jenkins measurement-plots plugin can parse them.

	Authors:

	Steve Conklin <sconklin@canonical.com>
Brad Figg <brad.figg@canonical.com>

Copyright (C) 2012 Canonical Ltd.

This script is distributed under the terms and conditions of the GNU General
Public License, Version 2 or later. See http://www.gnu.org/copyleft/gpl.html
for details.

	
autotest.client.tools.process_metrics.main(path)

	

	
autotest.client.tools.process_metrics.usage()

	

regression Module

Program that parses standard format results,
compute and check regression bug.

	copyright:	Red Hat 2011-2012

	author:	Amos Kong <akong@redhat.com>

	
class autotest.client.tools.regression.Sample(type, arg)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Collect test results in same environment to a sample

	
getAvg(avg_update=None)

	

	
getAvgPercent(avgs_dict)

	

	
getSD()

	

	
getSDRate(sds_dict)

	

	
getTtestPvalue(fs_dict1, fs_dict2, paired=None)

	scipy lib is used to compute p-value of Ttest
scipy: http://www.scipy.org/
t-test: http://en.wikipedia.org/wiki/Student’s_t-test

	
autotest.client.tools.regression.analyze(test, type, arg1, arg2, configfile)

	Compute averages/p-vales of two samples, print results nicely

	
autotest.client.tools.regression.display(lists, rates, allpvalues, f, ignore_col, sum='Augment Rate', prefix0=None, prefix1=None, prefix2=None, prefix3=None)

	Display lists data to standard format

param lists: row data lists
param rates: augment rates lists
param f: result output file
param ignore_col: do not display some columns
param sum: compare result summary
param prefix0: output prefix in head lines
param prefix1: output prefix in Avg/SD lines
param prefix2: output prefix in Diff Avg/P-value lines
param prefix3: output prefix in total Sign line

	
autotest.client.tools.regression.exec_sql(cmd, conf='../../global_config.ini')

	

	
autotest.client.tools.regression.get_test_keyval(jobid, keyname, default='')

	

	
autotest.client.tools.regression.is_int(n)

	

	
autotest.client.tools.regression.tee(content, file)

	Write content to standard output and file

results2junit Module

Program that parses the autotest results and generates JUnit test results in XML format.

	
autotest.client.tools.results2junit.dbg(ostr)

	

	
autotest.client.tools.results2junit.dump(obj)

	

	
autotest.client.tools.results2junit.file_load(file_name)

	Load the indicated file into a string and return the string.

	
autotest.client.tools.results2junit.main(basedir, resfiles)

	

	
autotest.client.tools.results2junit.parse_results(text)

	Parse text containing Autotest results.

	Returns:	A list of result 4-tuples.

	
autotest.client.tools.results2junit.text_clean(text)

	This always seems like such a hack, however, there are some characters that we can’t
deal with properly so this function just removes them from the text passed in.

scan_results Module

Program that parses the autotest results and return a nicely printed final test
result.

	copyright:	Red Hat 2008-2009

	
autotest.client.tools.scan_results.main(resfiles)

	

	
autotest.client.tools.scan_results.parse_results(text)

	Parse text containing Autotest results.

	Returns:	A list of result 4-tuples.

	
autotest.client.tools.scan_results.print_result(result, name_width)

	Nicely print a single Autotest result.

	Parameters:	
	result – a 4-tuple

	name_width – test name maximum width

frontend Package

Subpackages

	afe Package
	rpc_interface Module

afe Package

rpc_interface Module

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 autotest	

 	
 	
 autotest.client.autotest_local	

 	
 	
 autotest.client.base_sysinfo	

 	
 	
 autotest.client.base_utils	

 	
 	
 autotest.client.bkr_proxy	

 	
 	
 autotest.client.bkr_xml	

 	
 	
 autotest.client.client_logging_config	

 	
 	
 autotest.client.cmdparser	

 	
 	
 autotest.client.common	

 	
 	
 autotest.client.config	

 	
 	
 autotest.client.cpuset	

 	
 	
 autotest.client.fsdev_disks	

 	
 	
 autotest.client.fsdev_mgr	

 	
 	
 autotest.client.fsinfo	

 	
 	
 autotest.client.harness	

 	
 	
 autotest.client.harness_autoserv	

 	
 	
 autotest.client.harness_beaker	

 	
 	
 autotest.client.harness_simple	

 	
 	
 autotest.client.harness_standalone	

 	
 	
 autotest.client.job	

 	
 	
 autotest.client.kernel	

 	
 	
 autotest.client.kernel_config	

 	
 	
 autotest.client.kernel_versions	

 	
 	
 autotest.client.kernelexpand	

 	
 	
 autotest.client.kvm_control	

 	
 	
 autotest.client.local_host	

 	
 	
 autotest.client.lv_utils	

 	
 	
 autotest.client.net.basic_machine	

 	
 	
 autotest.client.net.common	

 	
 	
 autotest.client.net.net_tc	

 	
 	
 autotest.client.net.net_utils	

 	
 	
 autotest.client.net.net_utils_mock	

 	
 	
 autotest.client.optparser	

 	
 	
 autotest.client.os_dep	

 	
 	
 autotest.client.parallel	

 	
 	
 autotest.client.partition	

 	
 	
 autotest.client.profiler	

 	
 	
 autotest.client.profilers	

 	
 	
 autotest.client.profilers.blktrace.blktrace	

 	
 	
 autotest.client.profilers.catprofile.catprofile	

 	
 	
 autotest.client.profilers.cmdprofile.cmdprofile	

 	
 	
 autotest.client.profilers.cpistat.cpistat	

 	
 	
 autotest.client.profilers.ftrace.ftrace	

 	
 	
 autotest.client.profilers.inotify.inotify	

 	
 	
 autotest.client.profilers.iostat.iostat	

 	
 	
 autotest.client.profilers.kvm_stat.kvm_stat	

 	
 	
 autotest.client.profilers.lockmeter.lockmeter	

 	
 	
 autotest.client.profilers.lttng.lttng	

 	
 	
 autotest.client.profilers.mpstat.mpstat	

 	
 	
 autotest.client.profilers.oprofile.oprofile	

 	
 	
 autotest.client.profilers.perf.perf	

 	
 	
 autotest.client.profilers.powertop.powertop	

 	
 	
 autotest.client.profilers.readprofile.readprofile	

 	
 	
 autotest.client.profilers.sar.sar	

 	
 	
 autotest.client.profilers.systemtap.systemtap	

 	
 	
 autotest.client.profilers.vmstat.vmstat	

 	
 	
 autotest.client.setup	

 	
 	
 autotest.client.setup_job	

 	
 	
 autotest.client.setup_modules	

 	
 	
 autotest.client.shared.autotemp	

 	
 	
 autotest.client.shared.backports	

 	
 	
 autotest.client.shared.backports.collections	

 	
 	
 autotest.client.shared.backports.collections.defaultdict	

 	
 	
 autotest.client.shared.backports.collections.namedtuple	

 	
 	
 autotest.client.shared.backports.collections.OrderedDict	

 	
 	
 autotest.client.shared.barrier	

 	
 	
 autotest.client.shared.base_barrier	

 	
 	
 autotest.client.shared.base_check_version	

 	
 	
 autotest.client.shared.base_job	

 	
 	
 autotest.client.shared.base_packages	

 	
 	
 autotest.client.shared.base_syncdata	

 	
 	
 autotest.client.shared.boottool	

 	
 	
 autotest.client.shared.check_version	

 	
 	
 autotest.client.shared.common	

 	
 	
 autotest.client.shared.control_data	

 	
 	
 autotest.client.shared.distro	

 	
 	
 autotest.client.shared.distro_def	

 	
 	
 autotest.client.shared.enum	

 	
 	
 autotest.client.shared.error	

 	
 	
 autotest.client.shared.git	

 	
 	
 autotest.client.shared.host_protections	

 	
 	
 autotest.client.shared.host_queue_entry_states	

 	
 	
 autotest.client.shared.hosts	

 	
 	
 autotest.client.shared.hosts.base_classes	

 	
 	
 autotest.client.shared.hosts.common	

 	
 	
 autotest.client.shared.iscsi	

 	
 	
 autotest.client.shared.iso9660	

 	
 	
 autotest.client.shared.jsontemplate	

 	
 	
 autotest.client.shared.kernel_versions	

 	
 	
 autotest.client.shared.log	

 	
 	
 autotest.client.shared.logging_config	

 	
 	
 autotest.client.shared.logging_manager	

 	
 	
 autotest.client.shared.magic	

 	
 	
 autotest.client.shared.mail	

 	
 	
 autotest.client.shared.mock	

 	
 	
 autotest.client.shared.openvswitch	

 	
 	
 autotest.client.shared.packages	

 	
 	
 autotest.client.shared.pidfile	

 	
 	
 autotest.client.shared.profiler_manager	

 	
 	
 autotest.client.shared.progressbar	

 	
 	
 autotest.client.shared.report	

 	
 	
 autotest.client.shared.service	

 	
 	
 autotest.client.shared.settings	

 	
 	
 autotest.client.shared.software_manager	

 	
 	
 autotest.client.shared.syncdata	

 	
 	
 autotest.client.shared.test	

 	
 	
 autotest.client.shared.test_utils.config_change_validation	

 	
 	
 autotest.client.shared.test_utils.functools_24	

 	
 	
 autotest.client.shared.test_utils.mock	

 	
 	
 autotest.client.shared.test_utils.unittest	

 	
 	
 autotest.client.shared.utils	

 	
 	
 autotest.client.shared.utils_cgroup	

 	
 	
 autotest.client.shared.utils_koji	

 	
 	
 autotest.client.shared.utils_memory	

 	
 	
 autotest.client.shared.version	

 	
 	
 autotest.client.sysinfo	

 	
 	
 autotest.client.test	

 	
 	
 autotest.client.test_config	

 	
 	
 autotest.client.tools.boottool	

 	
 	
 autotest.client.tools.common	

 	
 	
 autotest.client.tools.crash_handler	

 	
 	
 autotest.client.tools.JUnit_api	

 	
 	
 autotest.client.tools.process_metrics	

 	
 	
 autotest.client.tools.regression	

 	
 	
 autotest.client.tools.results2junit	

 	
 	
 autotest.client.tools.scan_results	

 	
 	
 autotest.client.utils	

 	
 	
 autotest.client.xen	

 	
 	
 autotest.frontend.afe.model_logic	

 	
 	
 autotest.frontend.afe.models	

 	
 	
 autotest.frontend.tko.models	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y
 | Z

A

 	
 	AB_MODE (autotest.client.net.net_utils.bonding attribute)

 	abbrev_list() (in module autotest.client.cpuset)

 	active() (autotest.client.shared.profiler_manager.profiler_manager method)

 	AD_MODE (autotest.client.net.net_utils.bonding attribute)

 	add() (autotest.client.shared.profiler_manager.profiler_manager method)

 	(autotest.client.shared.utils.run_randomly method)

 	add_args() (autotest.client.tools.boottool.Grubby method)

 	add_br() (autotest.client.shared.openvswitch.OpenVSwitchControl method)

 	(autotest.client.shared.openvswitch.OpenVSwitchControlCli_140 method)

 	add_child() (autotest.client.net.net_tc.tcclass method)

 	add_class() (autotest.client.net.net_tc.classful_qdisc method)

 	add_console_handlers() (autotest.client.shared.logging_config.LoggingConfig method)

 	add_debug_file_handlers() (autotest.client.client_logging_config.ClientLoggingConfig method)

 	(autotest.client.shared.logging_config.LoggingConfig method)

 	add_fake_br() (autotest.client.shared.openvswitch.OpenVSwitchControlCli_140 method)

 	add_file_handler() (autotest.client.shared.logging_config.LoggingConfig method)

 	(autotest.client.shared.logging_config.TestingConfig method)

 	add_filter() (autotest.client.net.net_tc.classful_qdisc method)

 	add_global_option() (autotest.client.tools.boottool.EliloConf method)

 	add_kernel() (autotest.client.tools.boottool.Grubby method)

 	add_maddr() (autotest.client.net.net_utils.network_interface method)

 	add_param() (autotest.client.net.net_tc.netem method)

 	add_port() (autotest.client.shared.openvswitch.OpenVSwitchControl method)

 	(autotest.client.shared.openvswitch.OpenVSwitchControlCli_140 method)

 	add_port_tag() (autotest.client.shared.openvswitch.OpenVSwitchControl method)

 	(autotest.client.shared.openvswitch.OpenVSwitchControlCli_140 method)

 	add_port_trunk() (autotest.client.shared.openvswitch.OpenVSwitchControl method)

 	(autotest.client.shared.openvswitch.OpenVSwitchControlCli_140 method)

 	add_property() (autotest.client.tools.JUnit_api.propertiesType method)

 	add_repo() (autotest.client.shared.software_manager.AptBackend method)

 	(autotest.client.shared.software_manager.YumBackend method)

 	(autotest.client.shared.software_manager.ZypperBackend method)

 	add_repository() (autotest.client.job.base_client_job method)

 	(autotest.client.shared.base_packages.BasePackageManager method)

 	add_rule() (autotest.client.net.net_tc.u32filter method)

 	add_stream_handler() (autotest.client.shared.logging_config.LoggingConfig method)

 	(autotest.client.shared.logging_config.TestingConfig method)

 	add_sysinfo_command() (autotest.client.job.base_client_job method)

 	add_sysinfo_logfile() (autotest.client.job.base_client_job method)

 	add_testcase() (autotest.client.tools.JUnit_api.testsuite method)

 	add_testsuite() (autotest.client.tools.JUnit_api.testsuites method)

 	add_to_bootloader() (autotest.client.kernel.BootableKernel method)

 	(autotest.client.kernel.rpm_kernel_suse method)

 	(autotest.client.xen.xen method)

 	addError() (autotest.client.shared.test_utils.unittest.TestResult method)

 	addExpectedFailure() (autotest.client.shared.test_utils.unittest.TestResult method)

 	addFailure() (autotest.client.shared.test_utils.unittest.TestResult method)

 	addSkip() (autotest.client.shared.test_utils.unittest.TestResult method)

 	addSuccess() (autotest.client.shared.test_utils.unittest.TestResult method)

 	addTest() (autotest.client.shared.test_utils.unittest.TestSuite method)

 	addTests() (autotest.client.shared.test_utils.unittest.TestSuite method)

 	addTypeEqualityFunc() (autotest.client.shared.test_utils.unittest.TestCase method)

 	addUnexpectedSuccess() (autotest.client.shared.test_utils.unittest.TestResult method)

 	after_run_once() (autotest.client.shared.test.base_test method)

 	all() (in module autotest.client.shared.backports)

 	all_cgroup_delete() (in module autotest.client.shared.utils_cgroup)

 	all_drive_names() (in module autotest.client.cpuset)

 	AllowBelowSeverity (class in autotest.client.shared.logging_config)

 	analyze() (in module autotest.client.tools.regression)

 	analyze_perf_constraints() (autotest.client.shared.test.base_test method)

 	and_raises() (autotest.client.shared.test_utils.mock.function_mapping method)

 	and_return() (autotest.client.shared.test_utils.mock.function_mapping method)

 	any() (in module autotest.client.shared.backports)

 	anything_comparator (class in autotest.client.shared.test_utils.mock)

 	append_path() (in module autotest.client.base_utils)

 	apply_overrides() (in module autotest.client.kernel_config)

 	apply_patches() (autotest.client.kernel.kernel method)

 	(autotest.client.kernel.srpm_kernel method)

 	AptBackend (class in autotest.client.shared.software_manager)

 	arch_probe() (autotest.client.tools.boottool.Grubby method)

 	archive_as_tarball() (in module autotest.client.shared.utils)

 	args_to_dict() (in module autotest.client.shared.utils)

 	argument_comparator (class in autotest.client.shared.test_utils.mock)

 	ask() (in module autotest.client.shared.utils)

 	assert_() (autotest.client.shared.test.base_test method)

 	(autotest.client.shared.test_utils.unittest.TestCase method)

 	assert_any_call() (autotest.client.shared.mock.NonCallableMock method)

 	assert_called_once_with() (autotest.client.shared.mock.NonCallableMock method)

 	assert_called_with() (autotest.client.shared.mock.NonCallableMock method)

 	assert_config_change() (in module autotest.client.shared.test_utils.config_change_validation)

 	assert_config_change_dict() (in module autotest.client.shared.test_utils.config_change_validation)

 	assert_has_calls() (autotest.client.shared.mock.NonCallableMock method)

 	assertAlmostEqual() (autotest.client.shared.test_utils.unittest.TestCase method)

 	assertAlmostEquals() (autotest.client.shared.test_utils.unittest.TestCase method)

 	assertDictContainsSubset() (autotest.client.shared.test_utils.unittest.TestCase method)

 	assertDictEqual() (autotest.client.shared.test_utils.unittest.TestCase method)

 	assertEqual() (autotest.client.shared.test_utils.unittest.TestCase method)

 	assertEquals() (autotest.client.shared.test_utils.unittest.TestCase method)

 	assertFalse() (autotest.client.shared.test_utils.unittest.TestCase method)

 	assertGreater() (autotest.client.shared.test_utils.unittest.TestCase method)

 	assertGreaterEqual() (autotest.client.shared.test_utils.unittest.TestCase method)

 	assertIn() (autotest.client.shared.test_utils.unittest.TestCase method)

 	assertIs() (autotest.client.shared.test_utils.unittest.TestCase method)

 	assertIsNone() (autotest.client.shared.test_utils.unittest.TestCase method)

 	assertIsNot() (autotest.client.shared.test_utils.unittest.TestCase method)

 	assertIsNotNone() (autotest.client.shared.test_utils.unittest.TestCase method)

 	assertLess() (autotest.client.shared.test_utils.unittest.TestCase method)

 	assertLessEqual() (autotest.client.shared.test_utils.unittest.TestCase method)

 	assertListEqual() (autotest.client.shared.test_utils.unittest.TestCase method)

 	assertMultiLineEqual() (autotest.client.shared.test_utils.unittest.TestCase method)

 	assertNotAlmostEqual() (autotest.client.shared.test_utils.unittest.TestCase method)

 	assertNotAlmostEquals() (autotest.client.shared.test_utils.unittest.TestCase method)

 	assertNotEqual() (autotest.client.shared.test_utils.unittest.TestCase method)

 	assertNotEquals() (autotest.client.shared.test_utils.unittest.TestCase method)

 	assertNotIn() (autotest.client.shared.test_utils.unittest.TestCase method)

 	assertRaises() (autotest.client.shared.test_utils.unittest.TestCase method)

 	assertRaisesRegexp() (autotest.client.shared.test_utils.unittest.TestCase method)

 	assertRegexpMatches() (autotest.client.shared.test_utils.unittest.TestCase method)

 	assertSameElements() (autotest.client.shared.test_utils.unittest.TestCase method)

 	assertSequenceEqual() (autotest.client.shared.test_utils.unittest.TestCase method)

 	assertSetEqual() (autotest.client.shared.test_utils.unittest.TestCase method)

 	assertTrue() (autotest.client.shared.test_utils.unittest.TestCase method)

 	assertTupleEqual() (autotest.client.shared.test_utils.unittest.TestCase method)

 	AsyncJob (class in autotest.client.shared.utils)

 	aton() (in module autotest.client.shared.utils)

 	attach_mock() (autotest.client.shared.mock.NonCallableMock method)

 	ATTR_BOOTSERVICE_ACCESS (autotest.client.tools.boottool.EfiVar attribute)

 	ATTR_NON_VOLATILE (autotest.client.tools.boottool.EfiVar attribute)

 	ATTR_RUNTIME_ACCESS (autotest.client.tools.boottool.EfiVar attribute)

 	auto_kernel() (in module autotest.client.kernel)

 	autodir (autotest.client.kernel.kernel attribute)

 	(autotest.client.shared.base_job.base_job attribute)

 	automatic_test_tag (autotest.client.shared.base_job.base_job attribute)

 	AutoservDiskFullHostError

 	AutoservError

 	AutoservFetcher (class in autotest.client.harness_autoserv)

 	AutoservHardwareHostError

 	AutoservHardwareRepairRequestedError

 	AutoservHardwareRepairRequiredError

 	AutoservHostError

 	AutoservHostIsShuttingDownError

 	AutoservInstallError

 	AutoservNotMountedHostError

 	AutoservRebootError

 	AutoservRunError

 	AutoservShutdownError

 	AutoservSshPermissionDeniedError

 	AutoservSshPingHostError

 	AutoservSSHTimeout

 	AutoservSubcommandError

 	
 	AutoservUnsupportedError

 	AutoservVirtError

 	autotest.client.autotest_local (module)

 	autotest.client.base_sysinfo (module)

 	autotest.client.base_utils (module)

 	autotest.client.bkr_proxy (module)

 	autotest.client.bkr_xml (module)

 	autotest.client.client_logging_config (module)

 	autotest.client.cmdparser (module)

 	autotest.client.common (module)

 	autotest.client.config (module)

 	autotest.client.cpuset (module)

 	autotest.client.fsdev_disks (module)

 	autotest.client.fsdev_mgr (module)

 	autotest.client.fsinfo (module)

 	autotest.client.harness (module)

 	autotest.client.harness_autoserv (module)

 	autotest.client.harness_beaker (module)

 	autotest.client.harness_simple (module)

 	autotest.client.harness_standalone (module)

 	autotest.client.job (module)

 	autotest.client.kernel (module)

 	autotest.client.kernel_config (module)

 	autotest.client.kernel_versions (module)

 	autotest.client.kernelexpand (module)

 	autotest.client.kvm_control (module)

 	autotest.client.local_host (module)

 	autotest.client.lv_utils (module)

 	autotest.client.net.basic_machine (module)

 	autotest.client.net.common (module)

 	autotest.client.net.net_tc (module)

 	autotest.client.net.net_utils (module)

 	autotest.client.net.net_utils_mock (module)

 	autotest.client.optparser (module)

 	autotest.client.os_dep (module)

 	autotest.client.parallel (module)

 	autotest.client.partition (module)

 	autotest.client.profiler (module)

 	autotest.client.profilers (module)

 	autotest.client.profilers.blktrace.blktrace (module)

 	autotest.client.profilers.catprofile.catprofile (module)

 	autotest.client.profilers.cmdprofile.cmdprofile (module)

 	autotest.client.profilers.cpistat.cpistat (module)

 	autotest.client.profilers.ftrace.ftrace (module)

 	autotest.client.profilers.inotify.inotify (module)

 	autotest.client.profilers.iostat.iostat (module)

 	autotest.client.profilers.kvm_stat.kvm_stat (module)

 	autotest.client.profilers.lockmeter.lockmeter (module)

 	autotest.client.profilers.lttng.lttng (module)

 	autotest.client.profilers.mpstat.mpstat (module)

 	autotest.client.profilers.oprofile.oprofile (module)

 	autotest.client.profilers.perf.perf (module)

 	autotest.client.profilers.powertop.powertop (module)

 	autotest.client.profilers.readprofile.readprofile (module)

 	autotest.client.profilers.sar.sar (module)

 	autotest.client.profilers.systemtap.systemtap (module)

 	autotest.client.profilers.vmstat.vmstat (module)

 	autotest.client.setup (module)

 	autotest.client.setup_job (module)

 	autotest.client.setup_modules (module)

 	autotest.client.shared.autotemp (module)

 	autotest.client.shared.backports (module)

 	autotest.client.shared.backports.collections (module)

 	autotest.client.shared.backports.collections.defaultdict (module)

 	autotest.client.shared.backports.collections.namedtuple (module)

 	autotest.client.shared.backports.collections.OrderedDict (module)

 	autotest.client.shared.barrier (module)

 	autotest.client.shared.base_barrier (module)

 	autotest.client.shared.base_check_version (module)

 	autotest.client.shared.base_job (module)

 	autotest.client.shared.base_packages (module)

 	autotest.client.shared.base_syncdata (module)

 	autotest.client.shared.boottool (module)

 	autotest.client.shared.check_version (module)

 	autotest.client.shared.common (module)

 	autotest.client.shared.control_data (module)

 	autotest.client.shared.distro (module), [1]

 	autotest.client.shared.distro_def (module)

 	autotest.client.shared.enum (module)

 	autotest.client.shared.error (module)

 	autotest.client.shared.git (module)

 	autotest.client.shared.host_protections (module)

 	autotest.client.shared.host_queue_entry_states (module)

 	autotest.client.shared.hosts (module)

 	autotest.client.shared.hosts.base_classes (module)

 	autotest.client.shared.hosts.common (module)

 	autotest.client.shared.iscsi (module)

 	autotest.client.shared.iso9660 (module)

 	autotest.client.shared.jsontemplate (module)

 	autotest.client.shared.kernel_versions (module)

 	autotest.client.shared.log (module)

 	autotest.client.shared.logging_config (module)

 	autotest.client.shared.logging_manager (module)

 	autotest.client.shared.magic (module)

 	autotest.client.shared.mail (module)

 	autotest.client.shared.mock (module)

 	autotest.client.shared.openvswitch (module)

 	autotest.client.shared.packages (module)

 	autotest.client.shared.pidfile (module)

 	autotest.client.shared.profiler_manager (module)

 	autotest.client.shared.progressbar (module)

 	autotest.client.shared.report (module)

 	autotest.client.shared.service (module)

 	autotest.client.shared.settings (module)

 	autotest.client.shared.software_manager (module)

 	autotest.client.shared.syncdata (module)

 	autotest.client.shared.test (module)

 	autotest.client.shared.test_utils.config_change_validation (module)

 	autotest.client.shared.test_utils.functools_24 (module)

 	autotest.client.shared.test_utils.mock (module)

 	autotest.client.shared.test_utils.unittest (module)

 	autotest.client.shared.utils (module)

 	autotest.client.shared.utils_cgroup (module)

 	autotest.client.shared.utils_koji (module)

 	autotest.client.shared.utils_memory (module)

 	autotest.client.shared.version (module)

 	autotest.client.sysinfo (module)

 	autotest.client.test (module)

 	autotest.client.test_config (module)

 	autotest.client.tools.boottool (module)

 	autotest.client.tools.common (module)

 	autotest.client.tools.crash_handler (module)

 	autotest.client.tools.JUnit_api (module)

 	autotest.client.tools.process_metrics (module)

 	autotest.client.tools.regression (module)

 	autotest.client.tools.results2junit (module)

 	autotest.client.tools.scan_results (module)

 	autotest.client.utils (module)

 	autotest.client.xen (module)

 	autotest.frontend.afe.model_logic (module)

 	autotest.frontend.afe.models (module)

 	autotest.frontend.tko.models (module)

 	AutotestError

 	AutotestHostRunError

 	AutotestLocalApp (class in autotest.client.autotest_local)

 	AutotestLocalOptionParser (class in autotest.client.optparser)

 	AutotestRunError

 	AutotestTimeoutError

 	avail_mbytes() (in module autotest.client.cpuset)

 	available_exclusive_mem_nodes() (in module autotest.client.cpuset)

 	avgtime_print() (in module autotest.client.base_utils)

B

 	
 	BAD_CHAR_REGEX (autotest.client.shared.base_job.status_log_entry attribute)

 	BadFormatter

 	BadPredicate

 	barrier (class in autotest.client.shared.base_barrier)

 	barrier() (autotest.client.job.base_client_job method)

 	BarrierAbortError, [1]

 	BarrierError

 	base_check_python_version (class in autotest.client.shared.base_check_version)

 	base_client_job (class in autotest.client.job)

 	base_job (class in autotest.client.shared.base_job)

 	base_mapping (class in autotest.client.shared.test_utils.mock)

 	BASE_PATH (autotest.client.tools.boottool.EfiToolSys attribute)

 	base_sysinfo (class in autotest.client.base_sysinfo)

 	base_test (class in autotest.client.shared.test)

 	BaseBackend (class in autotest.client.shared.software_manager)

 	BaseFsdevManager (class in autotest.client.fsdev_mgr)

 	BasePackageManager (class in autotest.client.shared.base_packages)

 	BeakerXMLParser (class in autotest.client.bkr_xml)

 	before_run_once() (autotest.client.shared.test.base_test method)

 	before_start() (autotest.client.shared.profiler_manager.profiler_manager method)

 	BgJob (class in autotest.client.shared.utils)

 	bin() (in module autotest.client.shared.backports)

 	bind() (autotest.client.net.net_utils_mock.socket_stub method)

 	bindir (autotest.client.shared.base_job.base_job attribute)

 	binrpm_pattern (autotest.client.kernel.srpm_kernel attribute)

 	bitlist_to_string() (in module autotest.client.shared.utils)

 	BkrProxy (class in autotest.client.bkr_proxy)

 	BkrProxyException

 	blktrace (class in autotest.client.profilers.blktrace.blktrace)

 	bond() (in module autotest.client.net.net_utils)

 	bonding (class in autotest.client.net.net_utils)

 	boot() (autotest.client.kernel.kernel method)

 	(autotest.client.kernel.rpm_kernel method)

 	(autotest.client.kernel.srpm_kernel method)

 	boot_once() (autotest.client.tools.boottool.Grubby method)

 	boot_once_elilo() (autotest.client.tools.boottool.Grubby method)

 	boot_once_grub() (autotest.client.tools.boottool.Grubby method)

 	boot_once_grub2() (autotest.client.tools.boottool.Grubby method)

 	boot_once_yaboot() (autotest.client.tools.boottool.Grubby method)

 	BootableKernel (class in autotest.client.kernel)

 	bootloader_probe() (autotest.client.tools.boottool.Grubby method)

 	
 	bootstrap() (autotest.client.cmdparser.CommandParser method)

 	(autotest.client.harness_beaker.harness_beaker method)

 	boottool (class in autotest.client.shared.boottool)

 	br_exist() (autotest.client.shared.openvswitch.OpenVSwitchControl method)

 	(autotest.client.shared.openvswitch.OpenVSwitchControlCli_140 method)

 	build() (autotest.client.kernel.kernel method)

 	(autotest.client.kernel.rpm_kernel method)

 	(autotest.client.kernel.srpm_kernel method)

 	(autotest.client.tools.JUnit_api.errorType method)

 	(autotest.client.tools.JUnit_api.failureType method)

 	(autotest.client.tools.JUnit_api.propertiesType method)

 	(autotest.client.tools.JUnit_api.propertyType method)

 	(autotest.client.tools.JUnit_api.system_err method)

 	(autotest.client.tools.JUnit_api.system_out method)

 	(autotest.client.tools.JUnit_api.testcaseType method)

 	(autotest.client.tools.JUnit_api.testsuite method)

 	(autotest.client.tools.JUnit_api.testsuiteType method)

 	(autotest.client.tools.JUnit_api.testsuites method)

 	(autotest.client.xen.xen method)

 	build_timed() (autotest.client.kernel.kernel method)

 	(autotest.client.xen.xen method)

 	buildAttributes() (autotest.client.tools.JUnit_api.errorType method)

 	(autotest.client.tools.JUnit_api.failureType method)

 	(autotest.client.tools.JUnit_api.propertiesType method)

 	(autotest.client.tools.JUnit_api.propertyType method)

 	(autotest.client.tools.JUnit_api.system_err method)

 	(autotest.client.tools.JUnit_api.system_out method)

 	(autotest.client.tools.JUnit_api.testcaseType method)

 	(autotest.client.tools.JUnit_api.testsuite method)

 	(autotest.client.tools.JUnit_api.testsuiteType method)

 	(autotest.client.tools.JUnit_api.testsuites method)

 	buildChildren() (autotest.client.tools.JUnit_api.errorType method)

 	(autotest.client.tools.JUnit_api.failureType method)

 	(autotest.client.tools.JUnit_api.propertiesType method)

 	(autotest.client.tools.JUnit_api.propertyType method)

 	(autotest.client.tools.JUnit_api.system_err method)

 	(autotest.client.tools.JUnit_api.system_out method)

 	(autotest.client.tools.JUnit_api.testcaseType method)

 	(autotest.client.tools.JUnit_api.testsuite method)

 	(autotest.client.tools.JUnit_api.testsuiteType method)

 	(autotest.client.tools.JUnit_api.testsuites method)

C

 	
 	call (in module autotest.client.shared.mock)

 	call_args (autotest.client.shared.mock.NonCallableMock attribute)

 	call_args_list (autotest.client.shared.mock.NonCallableMock attribute)

 	call_count (autotest.client.shared.mock.NonCallableMock attribute)

 	called (autotest.client.shared.mock.NonCallableMock attribute)

 	cat_file_to_cmd() (in module autotest.client.base_utils)

 	catprofile (class in autotest.client.profilers.catprofile.catprofile)

 	cgclassify_cgroup() (autotest.client.shared.utils_cgroup.Cgroup method)

 	cgconfig_condrestart() (in module autotest.client.shared.utils_cgroup)

 	cgconfig_exists() (in module autotest.client.shared.utils_cgroup)

 	cgconfig_is_running() (in module autotest.client.shared.utils_cgroup)

 	cgconfig_restart() (in module autotest.client.shared.utils_cgroup)

 	cgconfig_start() (in module autotest.client.shared.utils_cgroup)

 	cgconfig_stop() (in module autotest.client.shared.utils_cgroup)

 	cgdelete_all_cgroups() (autotest.client.shared.utils_cgroup.Cgroup method)

 	cgdelete_cgroup() (autotest.client.shared.utils_cgroup.Cgroup method)

 	cgexec() (autotest.client.shared.utils_cgroup.Cgroup method)

 	Cgroup (class in autotest.client.shared.utils_cgroup)

 	CgroupModules (class in autotest.client.shared.utils_cgroup)

 	cgset_property() (autotest.client.shared.utils_cgroup.Cgroup method)

 	check() (autotest.client.shared.openvswitch.OpenVSwitchSystem method)

 	(autotest.client.test_config.config_loader method)

 	check_basic_structure() (autotest.client.tools.boottool.EfiToolSys method)

 	check_db_daemon() (autotest.client.shared.openvswitch.OpenVSwitchSystem method)

 	check_db_file() (autotest.client.shared.openvswitch.OpenVSwitchSystem method)

 	check_db_socket() (autotest.client.shared.openvswitch.OpenVSwitchSystem method)

 	check_diskspace() (autotest.client.shared.hosts.base_classes.Host method)

 	(in module autotest.client.shared.base_packages)

 	CHECK_FILE (autotest.client.shared.distro.Probe attribute), [1]

 	CHECK_FILE_CONTAINS (autotest.client.shared.distro.Probe attribute), [1]

 	CHECK_FILE_DISTRO_NAME (autotest.client.shared.distro.Probe attribute), [1]

 	check_for_kernel_feature() (in module autotest.client.base_utils)

 	check_glibc_ver() (in module autotest.client.base_utils)

 	check_installed() (autotest.client.shared.software_manager.DpkgBackend method)

 	(autotest.client.shared.software_manager.RpmBackend method)

 	check_kernel_ver() (in module autotest.client.base_utils)

 	check_mount_point() (autotest.client.fsdev_mgr.BaseFsdevManager method)

 	check_name_for_file() (autotest.client.shared.distro.Probe method), [1]

 	check_name_for_file_contains() (autotest.client.shared.distro.Probe method), [1]

 	check_parameter() (autotest.client.test_config.config_loader method)

 	check_partitions() (autotest.client.shared.hosts.base_classes.Host method)

 	check_playback() (autotest.client.shared.test_utils.mock.mock_god method)

 	check_port_in_br() (autotest.client.shared.openvswitch.OpenVSwitchControl method)

 	check_python_version (class in autotest.client.shared.check_version)

 	check_release() (autotest.client.shared.distro.Probe method), [1]

 	check_repair_versions() (autotest.client.shared.utils.VersionableClass class method)

 	check_stand_alone_client_run() (autotest.client.shared.settings.Settings method)

 	check_switch_daemon() (autotest.client.shared.openvswitch.OpenVSwitchSystem method)

 	check_values() (autotest.client.tools.boottool.OptionParser method)

 	check_version() (autotest.client.shared.distro.Probe method), [1]

 	CHECK_VERSION_REGEX (autotest.client.shared.distro.Probe attribute), [1], [2]

 	check_write() (in module autotest.client.shared.base_packages)

 	checkout() (autotest.client.shared.git.GitRepoHelper method)

 	CheckPlaybackError

 	CHECKSUM_LEN (autotest.client.net.net_utils.ethernet attribute)

 	choices() (autotest.client.shared.enum.Enum method)

 	classful (autotest.client.net.net_tc.classful_qdisc attribute)

 	(autotest.client.net.net_tc.classless_qdisc attribute)

 	classful_qdisc (class in autotest.client.net.net_tc)

 	classless_qdisc (class in autotest.client.net.net_tc)

 	classSuiteClass (autotest.client.shared.test_utils.unittest.TestLoader attribute)

 	ClassTestSuite (class in autotest.client.shared.test_utils.unittest)

 	clean() (autotest.client.kernel.kernel method)

 	(autotest.client.shared.autotemp.tempdir method)

 	(autotest.client.shared.autotemp.tempfile method)

 	(autotest.client.shared.base_syncdata.TempDir method)

 	(autotest.client.shared.openvswitch.OpenVSwitch method)

 	(autotest.client.shared.openvswitch.OpenVSwitchSystem method)

 	(autotest.client.shared.test.Subtest method)

 	cleanup() (autotest.client.shared.hosts.base_classes.Host method)

 	(autotest.client.shared.iscsi.Iscsi method)

 	(autotest.client.shared.test.base_test method)

 	(autotest.client.shared.utils.AsyncJob method)

 	(autotest.client.shared.utils.BgJob method)

 	cleanup_kernels() (autotest.client.shared.hosts.base_classes.Host method)

 	clear() (autotest.client.shared.backports.collections.OrderedDict.OrderedDict method)

 	clientdir (autotest.client.shared.base_job.base_job attribute)

 	ClientLoggingConfig (class in autotest.client.client_logging_config)

 	close() (autotest.client.net.net_utils.raw_socket method)

 	(autotest.client.net.net_utils_mock.socket_stub method)

 	(autotest.client.shared.base_barrier.listen_server method)

 	(autotest.client.shared.base_syncdata.SessionData method)

 	(autotest.client.shared.base_syncdata.SyncData method)

 	(autotest.client.shared.base_syncdata.SyncListenServer method)

 	(autotest.client.shared.hosts.base_classes.Host method)

 	(autotest.client.shared.iso9660.Iso9660IsoRead method)

 	(autotest.client.shared.iso9660.Iso9660Mount method)

 	(autotest.client.shared.test_utils.mock.SaveDataAfterCloseStringIO method)

 	close_file() (autotest.client.shared.pidfile.PidFileManager method)

 	close_log_file() (in module autotest.client.shared.utils)

 	CMD_LOOKUP_ORDER (autotest.client.shared.utils_koji.KojiClient attribute)

 	CmdError

 	CmdParserLoggingConfig (class in autotest.client.cmdparser)

 	cmdprofile (class in autotest.client.profilers.cmdprofile.cmdprofile)

 	CmdResult (class in autotest.client.shared.utils)

 	command (class in autotest.client.base_sysinfo)

 	command() (in module autotest.client.os_dep)

 	COMMAND_LIST (autotest.client.cmdparser.CommandParser attribute)

 	CommandParser (class in autotest.client.cmdparser)

 	commands() (in module autotest.client.os_dep)

 	
 	compare() (autotest.client.shared.magic.MagicTest method)

 	compare_checksum() (autotest.client.shared.base_packages.BasePackageManager method)

 	compare_features() (in module autotest.client.fsinfo)

 	compare_versions() (in module autotest.client.shared.utils)

 	CompilationError

 	CompileTemplate() (in module autotest.client.shared.jsontemplate)

 	complete() (autotest.client.job.base_client_job method)

 	compose() (in module autotest.client.shared.test_utils.functools_24)

 	compute_checksum() (autotest.client.shared.base_packages.BasePackageManager method)

 	conf_command (autotest.client.net.net_tc.tcfilter attribute)

 	conf_device (autotest.client.net.net_tc.tcfilter attribute)

 	conf_flowid (autotest.client.net.net_tc.tcfilter attribute)

 	conf_name (autotest.client.net.net_tc.tcfilter attribute)

 	conf_params (autotest.client.net.net_tc.tcfilter attribute)

 	conf_parent (autotest.client.net.net_tc.tcfilter attribute)

 	conf_priority (autotest.client.net.net_tc.tcfilter attribute)

 	conf_protocol (autotest.client.net.net_tc.tcfilter attribute)

 	conf_qdiscid (autotest.client.net.net_tc.tcfilter attribute)

 	conf_rules (autotest.client.net.net_tc.tcfilter attribute)

 	conf_type (autotest.client.net.net_tc.tcfilter attribute)

 	config (autotest.client.shared.settings.Settings attribute)

 	(class in autotest.client.config)

 	config() (autotest.client.kernel.kernel method)

 	(autotest.client.kernel.srpm_kernel method)

 	(autotest.client.xen.xen method)

 	config_by_name() (in module autotest.client.kernel_config)

 	config_file (autotest.client.shared.settings.Settings attribute)

 	config_get() (autotest.client.job.base_client_job method)

 	config_loader (class in autotest.client.test_config)

 	CONFIG_MAP (autotest.client.shared.utils_koji.KojiClient attribute)

 	config_record() (autotest.client.kernel_config.kernel_config method)

 	config_sched_tunables() (autotest.client.fsdev_disks.fsdev_disks method)

 	config_set() (autotest.client.job.base_client_job method)

 	configdir (autotest.client.shared.base_job.base_job attribute)

 	ConfigurationError

 	configure() (in module autotest.client.shared.utils)

 	configure_crash_handler() (autotest.client.shared.test.base_test method)

 	(autotest.client.test.test method)

 	configure_logging() (autotest.client.client_logging_config.ClientLoggingConfig method)

 	(autotest.client.cmdparser.CmdParserLoggingConfig method)

 	(autotest.client.shared.logging_config.LoggingConfig method)

 	(autotest.client.shared.logging_config.TestingConfig method)

 	(autotest.client.shared.magic.MagicLoggingConfig method)

 	(autotest.client.shared.report.ReportLoggingConfig method)

 	(autotest.client.shared.software_manager.SoftwareManagerLoggingConfig method)

 	(in module autotest.client.shared.logging_manager)

 	configure_mock() (autotest.client.shared.mock.NonCallableMock method)

 	conmuxdir (autotest.client.shared.base_job.base_job attribute)

 	console_formatter (autotest.client.shared.logging_config.LoggingConfig attribute)

 	consume_one_config() (autotest.client.kernel.srpm_kernel method)

 	container_bytes() (in module autotest.client.cpuset)

 	container_exists() (in module autotest.client.cpuset)

 	container_mbytes() (in module autotest.client.cpuset)

 	context() (in module autotest.client.shared.error)

 	context_aware() (in module autotest.client.shared.error)

 	control_get() (autotest.client.job.base_client_job method)

 	control_set() (autotest.client.job.base_client_job method)

 	ControlData (class in autotest.client.shared.control_data)

 	ControlVariableException

 	convert_conf_opt() (in module autotest.client.fsinfo)

 	convert_data_size() (in module autotest.client.shared.utils)

 	convert_ipv4_to_ipv6() (in module autotest.client.shared.utils)

 	convert_systemd_target_to_runlevel() (in module autotest.client.shared.service)

 	convert_sysv_runlevel() (in module autotest.client.shared.service)

 	convert_task_to_control() (autotest.client.harness_beaker.harness_beaker method)

 	convert_version_to_int() (autotest.client.shared.openvswitch.OpenVSwitchControl static method)

 	copy() (autotest.client.shared.backports.collections.defaultdict.defaultdict method)

 	(autotest.client.shared.backports.collections.OrderedDict.OrderedDict method)

 	(autotest.client.shared.iso9660.Iso9660IsoRead method)

 	(autotest.client.shared.iso9660.Iso9660Mount method)

 	copy_data() (in module autotest.client.bkr_proxy)

 	copy_local() (in module autotest.client.bkr_proxy)

 	copy_remote() (in module autotest.client.bkr_proxy)

 	count_cpus() (in module autotest.client.base_utils)

 	count_total_cpus() (in module autotest.client.base_utils)

 	countTestCases() (autotest.client.shared.test_utils.unittest.TestCase method)

 	(autotest.client.shared.test_utils.unittest.TestSuite method)

 	cpistat (class in autotest.client.profilers.cpistat.cpistat)

 	cpu_affinity_by_task() (in module autotest.client.shared.utils)

 	cpu_count() (autotest.client.job.base_client_job method)

 	cpu_has_flags() (in module autotest.client.base_utils)

 	cpu_online_map() (in module autotest.client.base_utils)

 	cpus_path() (in module autotest.client.cpuset)

 	cpuset_attr() (in module autotest.client.cpuset)

 	crash_handler_report() (autotest.client.shared.test.base_test method)

 	(autotest.client.test.test method)

 	create_autospec() (in module autotest.client.shared.mock)

 	create_container_directly() (in module autotest.client.cpuset)

 	create_container_via_memcg() (in module autotest.client.cpuset)

 	create_container_with_mbytes_and_specific_cpus() (in module autotest.client.cpuset)

 	create_container_with_specific_mems_cpus() (in module autotest.client.cpuset)

 	create_directory() (in module autotest.client.shared.base_packages)

 	create_mock_class() (autotest.client.shared.test_utils.mock.mock_god method)

 	create_mock_class_obj() (autotest.client.shared.test_utils.mock.mock_god method)

 	create_mock_function() (autotest.client.shared.test_utils.mock.mock_god method)

 	create_subnet_mask() (in module autotest.client.shared.utils)

 	create_variable() (autotest.client.tools.boottool.EfiToolSys method)

 	create_x509_dir() (in module autotest.client.shared.utils)

 	current_profilers() (autotest.client.shared.profiler_manager.profiler_manager method)

 	customtestdir (autotest.client.shared.base_job.base_job attribute)

D

 	
 	DataSyncError

 	dbg() (in module autotest.client.tools.results2junit)

 	debug() (autotest.client.shared.test_utils.unittest.TestCase method)

 	(autotest.client.shared.test_utils.unittest.TestSuite method)

 	decompose_kernel() (in module autotest.client.kernelexpand)

 	decompose_kernel_2x_once() (in module autotest.client.kernelexpand)

 	decompose_kernel_post_2x_once() (in module autotest.client.kernelexpand)

 	decored() (autotest.client.shared.test.Subtest method)

 	decrement() (autotest.client.job.status_indenter method)

 	(autotest.client.shared.base_job.status_indenter method)

 	default() (autotest.client.tools.boottool.Grubby method)

 	DEFAULT_ATTRIBUTES (autotest.client.tools.boottool.EfiVar attribute)

 	default_profile_only (autotest.client.shared.base_job.base_job attribute)

 	DEFAULT_REBOOT_TIMEOUT (autotest.client.shared.hosts.base_classes.Host attribute)

 	DEFAULT_WIDTH (autotest.client.shared.progressbar.ProgressBar attribute)

 	defaultdict (class in autotest.client.shared.backports.collections.defaultdict)

 	defaultTestResult() (autotest.client.shared.test_utils.unittest.TestCase method)

 	del_br() (autotest.client.shared.openvswitch.OpenVSwitchControl method)

 	(autotest.client.shared.openvswitch.OpenVSwitchControlCli_140 method)

 	del_maddr() (autotest.client.net.net_utils.network_interface method)

 	del_port() (autotest.client.shared.openvswitch.OpenVSwitchControl method)

 	(autotest.client.shared.openvswitch.OpenVSwitchControlCli_140 method)

 	del_temp_file_copies() (in module autotest.client.shared.test_utils.config_change_validation)

 	DEL_VAR (autotest.client.tools.boottool.EfiToolSys attribute)

 	delete() (autotest.client.shared.profiler_manager.profiler_manager method)

 	delete_leftover_test_containers() (in module autotest.client.cpuset)

 	delete_pid_file_if_exists() (in module autotest.client.shared.utils)

 	delete_target() (autotest.client.shared.iscsi.Iscsi method)

 	delete_variable() (autotest.client.tools.boottool.EfiToolSys method)

 	deprecated() (in module autotest.client.shared.utils)

 	describe() (autotest.client.shared.utils_koji.KojiPkgSpec method)

 	
 	describe_invalid() (autotest.client.shared.utils_koji.KojiPkgSpec method)

 	deserialize() (autotest.client.base_sysinfo.base_sysinfo method)

 	destroy() (autotest.client.partition.virtual_partition method)

 	detect() (in module autotest.client.shared.distro), [1]

 	diff_configs() (in module autotest.client.kernel_config)

 	difflist() (in module autotest.client.base_utils)

 	DISABLE (autotest.client.net.net_utils.network_interface attribute)

 	disable() (autotest.client.net.net_utils.bonding method)

 	disable_external_logging() (autotest.client.job.base_client_job method)

 	disable_ip_local_loopback() (autotest.client.net.net_utils.network_utils method)

 	disable_ipfilters() (autotest.client.shared.hosts.base_classes.Host method)

 	disable_loopback() (autotest.client.net.net_utils.network_interface method)

 	disable_promisc() (autotest.client.net.net_utils.network_interface method)

 	disable_warnings() (autotest.client.job.base_client_job method)

 	discard() (autotest.client.shared.base_job.job_state method)

 	discard_namespace() (autotest.client.shared.base_job.job_state method)

 	discover_container_style() (in module autotest.client.cpuset)

 	disk_block_size() (in module autotest.client.base_utils)

 	disk_usage_monitor (class in autotest.client.job)

 	display() (in module autotest.client.tools.regression)

 	display_data_size() (in module autotest.client.shared.utils)

 	DISTRO_PKG_INFO_LOADERS (in module autotest.client.shared.distro_def)

 	DistroDef (class in autotest.client.shared.distro_def)

 	do_not_report_as_logging_caller() (in module autotest.client.shared.logging_manager)

 	down() (autotest.client.net.net_utils.network_interface method)

 	DpkgBackend (class in autotest.client.shared.software_manager)

 	drop_caches() (in module autotest.client.shared.utils_memory)

 	drop_caches_between_iterations() (autotest.client.shared.test.base_test method)

 	dump() (autotest.client.shared.utils.SystemLoad method)

 	(in module autotest.client.tools.results2junit)

 	dump_object() (in module autotest.client.base_utils)

E

 	
 	EfiToolSys (class in autotest.client.tools.boottool)

 	EfiVar (class in autotest.client.tools.boottool)

 	EliloConf (class in autotest.client.tools.boottool)

 	EmailNotificationManager (class in autotest.client.shared.mail)

 	ENABLE (autotest.client.net.net_utils.network_interface attribute)

 	enable() (autotest.client.net.net_utils.bonding method)

 	enable_external_logging() (autotest.client.job.base_client_job method)

 	enable_ip_local_loopback() (autotest.client.net.net_utils.network_utils method)

 	enable_ipfilters() (autotest.client.shared.hosts.base_classes.Host method)

 	enable_loopback() (autotest.client.net.net_utils.network_interface method)

 	enable_promisc() (autotest.client.net.net_utils.network_interface method)

 	enable_warnings() (autotest.client.job.base_client_job method)

 	end_reboot() (autotest.client.job.base_client_job method)

 	end_reboot_and_verify() (autotest.client.job.base_client_job method)

 	enqueue_admin() (autotest.client.shared.mail.EmailNotificationManager method)

 	enqueue_exception_admin() (autotest.client.shared.mail.EmailNotificationManager method)

 	Enum (class in autotest.client.shared.enum)

 	environ() (in module autotest.client.base_utils)

 	equality_comparator (class in autotest.client.shared.test_utils.mock)

 	erase_dir_contents() (autotest.client.shared.hosts.base_classes.Host method)

 	Error

 	errorType (class in autotest.client.tools.JUnit_api)

 	ETH_LLDP_DST_MAC (autotest.client.net.net_utils.ethernet attribute)

 	ETH_P_ALL (autotest.client.net.net_utils.raw_socket attribute)

 	ETH_PACKET_MAX_SIZE (autotest.client.net.net_utils.ethernet attribute)

 	ETH_PACKET_MIN_SIZE (autotest.client.net.net_utils.ethernet attribute)

 	ETH_TYPE_8021Q (autotest.client.net.net_utils.ethernet attribute)

 	ETH_TYPE_ARP (autotest.client.net.net_utils.ethernet attribute)

 	ETH_TYPE_CDP (autotest.client.net.net_utils.ethernet attribute)

 	ETH_TYPE_IP (autotest.client.net.net_utils.ethernet attribute)

 	ETH_TYPE_IP6 (autotest.client.net.net_utils.ethernet attribute)

 	ETH_TYPE_LLDP (autotest.client.net.net_utils.ethernet attribute)

 	ETH_TYPE_LOOPBACK (autotest.client.net.net_utils.ethernet attribute)

 	ethernet (class in autotest.client.net.net_utils)

 	ethernet_packet() (in module autotest.client.net.net_utils)

 	etraceback() (in module autotest.client.shared.utils)

 	EvaluationError

 	exception_context() (in module autotest.client.shared.error)

 	exception_when_false_wrapper() (in module autotest.client.os_dep)

 	exec_sql() (in module autotest.client.tools.regression)

 	execute() (autotest.client.shared.git.GitRepoHelper method)

 	(autotest.client.shared.test.base_test method)

 	exists() (autotest.client.net.net_utils.network_interface method)

 	exit_status (autotest.client.shared.error.TestBaseException attribute)

 	(autotest.client.shared.error.TestError attribute)

 	(autotest.client.shared.error.TestFail attribute)

 	(autotest.client.shared.error.TestNAError attribute)

 	(autotest.client.shared.error.TestWarn attribute)

 	expand() (autotest.client.shared.jsontemplate.Template method)

 	(in module autotest.client.shared.jsontemplate)

 	expand_classic() (in module autotest.client.kernelexpand)

 	expect_any_call() (autotest.client.shared.test_utils.mock.mock_function method)

 	expect_call() (autotest.client.shared.test_utils.mock.mock_function method)

 	expectedFailure() (in module autotest.client.shared.test_utils.unittest)

 	export() (autotest.client.tools.JUnit_api.errorType method)

 	(autotest.client.tools.JUnit_api.failureType method)

 	(autotest.client.tools.JUnit_api.propertiesType method)

 	(autotest.client.tools.JUnit_api.propertyType method)

 	(autotest.client.tools.JUnit_api.system_err method)

 	(autotest.client.tools.JUnit_api.system_out method)

 	(autotest.client.tools.JUnit_api.testcaseType method)

 	(autotest.client.tools.JUnit_api.testsuite method)

 	(autotest.client.tools.JUnit_api.testsuiteType method)

 	(autotest.client.tools.JUnit_api.testsuites method)

 	
 	export_target() (autotest.client.shared.iscsi.Iscsi method)

 	exportAttributes() (autotest.client.tools.JUnit_api.errorType method)

 	(autotest.client.tools.JUnit_api.failureType method)

 	(autotest.client.tools.JUnit_api.propertiesType method)

 	(autotest.client.tools.JUnit_api.propertyType method)

 	(autotest.client.tools.JUnit_api.system_err method)

 	(autotest.client.tools.JUnit_api.system_out method)

 	(autotest.client.tools.JUnit_api.testcaseType method)

 	(autotest.client.tools.JUnit_api.testsuite method)

 	(autotest.client.tools.JUnit_api.testsuiteType method)

 	(autotest.client.tools.JUnit_api.testsuites method)

 	exportChildren() (autotest.client.tools.JUnit_api.errorType method)

 	(autotest.client.tools.JUnit_api.failureType method)

 	(autotest.client.tools.JUnit_api.propertiesType method)

 	(autotest.client.tools.JUnit_api.propertyType method)

 	(autotest.client.tools.JUnit_api.system_err method)

 	(autotest.client.tools.JUnit_api.system_out method)

 	(autotest.client.tools.JUnit_api.testcaseType method)

 	(autotest.client.tools.JUnit_api.testsuite method)

 	(autotest.client.tools.JUnit_api.testsuiteType method)

 	(autotest.client.tools.JUnit_api.testsuites method)

 	exportLiteral() (autotest.client.tools.JUnit_api.errorType method)

 	(autotest.client.tools.JUnit_api.failureType method)

 	(autotest.client.tools.JUnit_api.propertiesType method)

 	(autotest.client.tools.JUnit_api.propertyType method)

 	(autotest.client.tools.JUnit_api.system_err method)

 	(autotest.client.tools.JUnit_api.system_out method)

 	(autotest.client.tools.JUnit_api.testcaseType method)

 	(autotest.client.tools.JUnit_api.testsuite method)

 	(autotest.client.tools.JUnit_api.testsuiteType method)

 	(autotest.client.tools.JUnit_api.testsuites method)

 	exportLiteralAttributes() (autotest.client.tools.JUnit_api.errorType method)

 	(autotest.client.tools.JUnit_api.failureType method)

 	(autotest.client.tools.JUnit_api.propertiesType method)

 	(autotest.client.tools.JUnit_api.propertyType method)

 	(autotest.client.tools.JUnit_api.system_err method)

 	(autotest.client.tools.JUnit_api.system_out method)

 	(autotest.client.tools.JUnit_api.testcaseType method)

 	(autotest.client.tools.JUnit_api.testsuite method)

 	(autotest.client.tools.JUnit_api.testsuiteType method)

 	(autotest.client.tools.JUnit_api.testsuites method)

 	exportLiteralChildren() (autotest.client.tools.JUnit_api.errorType method)

 	(autotest.client.tools.JUnit_api.failureType method)

 	(autotest.client.tools.JUnit_api.propertiesType method)

 	(autotest.client.tools.JUnit_api.propertyType method)

 	(autotest.client.tools.JUnit_api.system_err method)

 	(autotest.client.tools.JUnit_api.system_out method)

 	(autotest.client.tools.JUnit_api.testcaseType method)

 	(autotest.client.tools.JUnit_api.testsuite method)

 	(autotest.client.tools.JUnit_api.testsuiteType method)

 	(autotest.client.tools.JUnit_api.testsuites method)

 	ext_mkfs_options() (in module autotest.client.fsinfo)

 	ext_tunables() (in module autotest.client.fsinfo)

 	extract() (autotest.client.kernel.kernel method)

 	extract_all_time_results() (in module autotest.client.base_utils)

 	extract_config_changes() (in module autotest.client.shared.test_utils.config_change_validation)

 	extract_tarball() (in module autotest.client.base_utils)

 	extract_tarball_to_dir() (in module autotest.client.base_utils)

 	extract_version() (autotest.client.shared.base_check_version.base_check_python_version method)

 	extraversion() (autotest.client.kernel.kernel method)

F

 	
 	factory() (autotest.client.tools.JUnit_api.errorType static method)

 	(autotest.client.tools.JUnit_api.failureType static method)

 	(autotest.client.tools.JUnit_api.propertiesType static method)

 	(autotest.client.tools.JUnit_api.propertyType static method)

 	(autotest.client.tools.JUnit_api.system_err static method)

 	(autotest.client.tools.JUnit_api.system_out static method)

 	(autotest.client.tools.JUnit_api.testcaseType static method)

 	(autotest.client.tools.JUnit_api.testsuite static method)

 	(autotest.client.tools.JUnit_api.testsuiteType static method)

 	(autotest.client.tools.JUnit_api.testsuites static method)

 	fail() (autotest.client.shared.test_utils.unittest.TestCase method)

 	failed (autotest.client.shared.test.Subtest attribute)

 	failIf() (autotest.client.shared.test_utils.unittest.TestCase method)

 	failIfAlmostEqual() (autotest.client.shared.test_utils.unittest.TestCase method)

 	failIfEqual() (autotest.client.shared.test_utils.unittest.TestCase method)

 	failUnless() (autotest.client.shared.test_utils.unittest.TestCase method)

 	failUnlessAlmostEqual() (autotest.client.shared.test_utils.unittest.TestCase method)

 	failUnlessEqual() (autotest.client.shared.test_utils.unittest.TestCase method)

 	failUnlessRaises() (autotest.client.shared.test_utils.unittest.TestCase method)

 	failureException (autotest.client.shared.test_utils.unittest.TestCase attribute)

 	failureType (class in autotest.client.tools.JUnit_api)

 	fastcut() (in module autotest.client.shared.test_utils.functools_24)

 	FdRedirectionLoggingManager (class in autotest.client.shared.logging_manager)

 	feature_enabled() (in module autotest.client.kernel_config)

 	fetch() (autotest.client.cmdparser.CommandParser method)

 	(autotest.client.shared.git.GitRepoHelper method)

 	fetch_package() (autotest.client.harness_autoserv.harness_autoserv method)

 	fetch_pkg() (autotest.client.shared.base_packages.BasePackageManager method)

 	fetch_pkg_file() (autotest.client.harness_autoserv.AutoservFetcher method)

 	(autotest.client.shared.base_packages.GitFetcher method)

 	(autotest.client.shared.base_packages.HttpFetcher method)

 	(autotest.client.shared.base_packages.LocalFilesystemFetcher method)

 	(autotest.client.shared.base_packages.RepositoryFetcher method)

 	file_contains_pattern() (in module autotest.client.base_utils)

 	file_formatter (autotest.client.shared.logging_config.LoggingConfig attribute)

 	file_load() (in module autotest.client.tools.results2junit)

 	FileFieldMonitor (class in autotest.client.shared.utils)

 	FileFieldMonitor.Monitor (class in autotest.client.shared.utils)

 	filesystem() (autotest.client.job.base_client_job method)

 	filesystems() (in module autotest.client.partition)

 	filter() (autotest.client.shared.logging_config.AllowBelowSeverity method)

 	filter_partition_list() (in module autotest.client.partition)

 	filtertype (autotest.client.net.net_tc.u32filter attribute)

 	final_data (autotest.client.shared.test_utils.mock.SaveDataAfterCloseStringIO attribute)

 	find_command() (in module autotest.client.shared.utils)

 	
 	find_desired_python() (autotest.client.shared.base_check_version.base_check_python_version method)

 	find_executable() (in module autotest.client.tools.boottool)

 	find_free_port() (in module autotest.client.shared.utils)

 	find_free_ports() (in module autotest.client.shared.utils)

 	find_recipe() (autotest.client.harness_beaker.harness_beaker method)

 	find_substring() (in module autotest.client.shared.utils)

 	findTestCases() (in module autotest.client.shared.test_utils.unittest)

 	finish_fsdev() (in module autotest.client.fsdev_disks)

 	finish_init() (autotest.client.kernel.srpm_kernel method)

 	(autotest.client.kernel.srpm_kernel_suse method)

 	fix_up_xen_kernel_makefile() (autotest.client.xen.xen method)

 	flush() (autotest.client.net.net_utils.network_interface method)

 	(autotest.client.shared.logging_manager.LoggingFile method)

 	FMT (autotest.client.tools.boottool.EfiVar attribute)

 	ForAll (class in autotest.client.shared.utils)

 	ForAllP (class in autotest.client.shared.utils)

 	ForAllPSE (class in autotest.client.shared.utils)

 	force_copy() (in module autotest.client.base_utils)

 	force_link() (in module autotest.client.base_utils)

 	fork_nuke_subprocess() (in module autotest.client.parallel)

 	fork_start() (in module autotest.client.parallel)

 	fork_waitfor() (in module autotest.client.parallel)

 	fork_waitfor_timed() (in module autotest.client.parallel)

 	format_error() (in module autotest.client.shared.error)

 	format_ip_with_mask() (in module autotest.client.shared.utils)

 	format_str_for_message() (in module autotest.client.shared.utils)

 	FRAME_KEY_DST_MAC (autotest.client.net.net_utils.ethernet attribute)

 	FRAME_KEY_PAYLOAD (autotest.client.net.net_utils.ethernet attribute)

 	FRAME_KEY_PROTO (autotest.client.net.net_utils.ethernet attribute)

 	FRAME_KEY_SRC_MAC (autotest.client.net.net_utils.ethernet attribute)

 	freememtotal() (in module autotest.client.shared.utils_memory)

 	freespace() (in module autotest.client.base_utils)

 	FromFile() (in module autotest.client.shared.jsontemplate)

 	fromkeys() (autotest.client.shared.backports.collections.OrderedDict.OrderedDict class method)

 	FromString() (in module autotest.client.shared.jsontemplate)

 	fs_tag (autotest.client.partition.FsOptions attribute)

 	fsck() (autotest.client.partition.partition method)

 	fsdev_disks (class in autotest.client.fsdev_disks)

 	FsdevManager (class in autotest.client.fsdev_mgr)

 	FsOptions (class in autotest.client.partition)

 	fstype (autotest.client.partition.FsOptions attribute)

 	ftrace (class in autotest.client.profilers.ftrace.ftrace)

 	full_path() (in module autotest.client.cpuset)

 	function_any_args_mapping (class in autotest.client.shared.test_utils.mock)

 	function_mapping (class in autotest.client.shared.test_utils.mock)

 	FunctionTestCase (class in autotest.client.shared.test_utils.unittest)

G

 	
 	gdb_report() (in module autotest.client.tools.crash_handler)

 	generate_bin_search_paths() (in module autotest.client.os_dep)

 	generate_html_report() (in module autotest.client.shared.report)

 	generate_include_search_paths() (in module autotest.client.os_dep)

 	generate_json_file() (in module autotest.client.shared.report)

 	generate_library_search_paths() (in module autotest.client.os_dep)

 	generate_random_id() (in module autotest.client.shared.utils)

 	generate_random_string() (in module autotest.client.shared.utils)

 	(in module autotest.client.tools.crash_handler)

 	generate_tmp_file_name() (in module autotest.client.shared.utils)

 	get() (autotest.client.config.config method)

 	(autotest.client.shared.base_job.job_state method)

 	(autotest.client.test_config.config_loader method)

 	get_active_interfaces() (autotest.client.net.net_utils.bonding method)

 	get_advertised_link_modes() (autotest.client.net.net_utils.network_interface method)

 	get_all_controllers() (in module autotest.client.shared.utils_cgroup)

 	get_arch() (autotest.client.shared.hosts.base_classes.Host method)

 	(autotest.client.shared.utils_koji.RPMFileNameInfo method)

 	(in module autotest.client.shared.utils)

 	get_architecture() (autotest.client.tools.boottool.Grubby method)

 	get_archive_tarball_name() (in module autotest.client.shared.utils)

 	get_attr_name() (autotest.client.shared.enum.Enum static method)

 	get_autodir() (autotest.client.shared.hosts.base_classes.Host method)

 	get_autotest_root() (autotest.client.shared.logging_config.LoggingConfig class method)

 	get_average() (autotest.client.shared.utils.Statistic method)

 	get_beaker_code() (in module autotest.client.harness_beaker)

 	get_boot_id() (autotest.client.shared.hosts.base_classes.Host method)

 	get_boot_numa() (in module autotest.client.cpuset)

 	get_bootloader() (autotest.client.tools.boottool.Grubby method)

 	get_buddy_info() (in module autotest.client.shared.utils_memory)

 	get_carrier() (autotest.client.net.net_utils.network_interface method)

 	get_cc() (in module autotest.client.base_utils)

 	get_cgroup_index() (autotest.client.shared.utils_cgroup.Cgroup method)

 	get_cgroup_mountpoint() (in module autotest.client.shared.utils_cgroup)

 	get_cgroup_name() (autotest.client.shared.utils_cgroup.Cgroup method)

 	get_children_pids() (in module autotest.client.shared.utils)

 	get_class() (autotest.client.net.net_tc.prio method)

 	get_classname() (autotest.client.tools.JUnit_api.testcaseType method)

 	get_cmdline() (autotest.client.shared.hosts.base_classes.Host method)

 	get_context() (in module autotest.client.shared.error)

 	get_cpu_arch() (in module autotest.client.base_utils)

 	get_cpu_family() (in module autotest.client.base_utils)

 	get_cpu_info() (in module autotest.client.base_utils)

 	get_cpu_percentage() (in module autotest.client.shared.utils)

 	get_cpu_stat() (in module autotest.client.base_utils)

 	get_cpu_status_string() (autotest.client.shared.utils.SystemLoad method)

 	get_cpu_vendor() (in module autotest.client.base_utils)

 	get_cpu_vendor_name() (in module autotest.client.base_utils)

 	get_cpus() (in module autotest.client.cpuset)

 	get_current_kernel_arch() (in module autotest.client.base_utils)

 	get_data() (autotest.client.tools.boottool.EfiVar method)

 	get_data_files() (in module autotest.client.setup)

 	get_default() (autotest.client.tools.boottool.Grubby method)

 	get_default_command() (autotest.client.shared.utils_koji.KojiClient method)

 	get_default_index() (autotest.client.tools.boottool.Grubby method)

 	get_default_koji_tag() (in module autotest.client.shared.utils_koji)

 	get_default_title() (autotest.client.tools.boottool.Grubby method)

 	get_dest_qdisc() (autotest.client.net.net_tc.tcfilter method)

 	get_device() (autotest.client.profilers.blktrace.blktrace.blktrace method)

 	get_device_name() (autotest.client.shared.iscsi.Iscsi method)

 	get_disk_list() (in module autotest.client.fsdev_disks)

 	get_disks() (in module autotest.client.base_utils)

 	get_distro() (autotest.client.shared.distro.Probe method), [1]

 	get_driver() (autotest.client.net.net_utils.network_interface method)

 	(autotest.client.net.net_utils_mock.network_interface_mock method)

 	get_entries() (autotest.client.tools.boottool.Grubby method)

 	get_entry() (autotest.client.tools.boottool.Grubby method)

 	get_error() (autotest.client.tools.JUnit_api.testcaseType method)

 	get_errors() (autotest.client.tools.JUnit_api.testsuite method)

 	get_extensiontype_() (autotest.client.tools.JUnit_api.testsuite method)

 	get_failure() (autotest.client.tools.JUnit_api.testcaseType method)

 	get_failures() (autotest.client.tools.JUnit_api.testsuite method)

 	get_fetcher() (autotest.client.shared.base_packages.BasePackageManager method)

 	get_field() (in module autotest.client.shared.utils)

 	get_file() (autotest.client.shared.hosts.base_classes.Host method)

 	(in module autotest.client.shared.utils)

 	get_file_arch() (in module autotest.client.base_utils)

 	get_filelist() (in module autotest.client.setup)

 	get_filename_without_arch() (autotest.client.shared.utils_koji.RPMFileNameInfo method)

 	get_filename_without_suffix() (autotest.client.shared.utils_koji.RPMFileNameInfo method)

 	get_fsck_exec() (autotest.client.partition.partition method)

 	get_fsdev_mgr() (autotest.client.fsdev_disks.fsdev_disks method)

 	get_full_pci_id() (in module autotest.client.shared.utils)

 	get_full_text_result() (autotest.client.shared.test.Subtest class method)

 	get_grubby_version() (autotest.client.tools.boottool.Grubby method)

 	get_grubby_version_raw() (autotest.client.tools.boottool.Grubby method)

 	get_handle() (autotest.client.net.net_tc.qdisc method)

 	(autotest.client.net.net_tc.tcfilter method)

 	get_hash_from_file() (in module autotest.client.shared.utils)

 	get_host_from_id() (in module autotest.client.shared.base_barrier)

 	get_hostname() (autotest.client.tools.JUnit_api.testsuite method)

 	get_huge_page_size() (in module autotest.client.shared.utils_memory)

 	get_hwaddr() (autotest.client.net.net_utils.network_interface method)

 	get_hwclock_seconds() (in module autotest.client.base_utils)

 	get_id() (autotest.client.tools.JUnit_api.testsuiteType method)

 	get_info() (autotest.client.tools.boottool.Grubby method)

 	get_info_file() (in module autotest.client.shared.report)

 	get_info_from_core() (in module autotest.client.tools.crash_handler)

 	get_info_lines() (autotest.client.tools.boottool.Grubby method)

 	get_io_scheduler() (autotest.client.partition.partition method)

 	get_io_scheduler_list() (autotest.client.partition.partition method)

 	get_iosched_path() (in module autotest.client.partition)

 	get_ip_local() (autotest.client.net.net_utils.network_utils method)

 	get_ip_local_port_range() (in module autotest.client.shared.utils)

 	get_ipaddr() (autotest.client.net.net_utils.network_interface method)

 	(autotest.client.net.net_utils_mock.network_interface_mock method)

 	get_kernel_build_arch() (autotest.client.kernel.kernel method)

 	get_kernel_build_ident() (autotest.client.kernel.kernel method)

 	get_kernel_build_release() (autotest.client.kernel.kernel method)

 	get_kernel_build_ver() (autotest.client.kernel.kernel method)

 	get_kernel_tree() (autotest.client.kernel.kernel method)

 	get_kernel_ver() (autotest.client.shared.hosts.base_classes.Host method)

 	get_kvm_arch() (in module autotest.client.kvm_control)

 	get_leaf_qdisc() (autotest.client.net.net_tc.tcclass method)

 	get_load_per_cpu() (in module autotest.client.shared.utils_cgroup)

 	get_loaded_modules() (in module autotest.client.base_utils)

 	get_logging_manager() (in module autotest.client.shared.logging_manager)

 	get_mappings_2x() (in module autotest.client.kernelexpand)

 	get_mappings_post_2x() (in module autotest.client.kernelexpand)

 	get_max() (autotest.client.shared.utils.Statistic method)

 	get_mem_nodes() (in module autotest.client.cpuset)

 	get_mem_status_string() (autotest.client.shared.utils.SystemLoad method)

 	get_meminfo() (autotest.client.shared.hosts.base_classes.Host method)

 	get_message() (autotest.client.tools.JUnit_api.errorType method)

 	(autotest.client.tools.JUnit_api.failureType method)

 	get_mii_status() (autotest.client.net.net_utils.bonding method)

 	get_min() (autotest.client.shared.utils.Statistic method)

 	get_minor() (autotest.client.net.net_tc.tcclass method)

 	get_mirror_list() (autotest.client.shared.base_packages.BasePackageManager method)

 	get_mode() (autotest.client.net.net_utils.bonding method)

 	get_modules_dir() (in module autotest.client.base_utils)

 	get_mount_info() (in module autotest.client.partition)

 	get_mountpoint() (autotest.client.partition.partition method)

 	get_name() (autotest.client.net.net_utils.network_interface method)

 	(autotest.client.tools.JUnit_api.propertyType method)

 	(autotest.client.tools.JUnit_api.testcaseType method)

 	(autotest.client.tools.JUnit_api.testsuite method)

 	(autotest.client.tools.boottool.EfiVar method)

 	
 	get_name_of_init() (in module autotest.client.shared.service)

 	get_num_cpu() (autotest.client.shared.hosts.base_classes.Host method)

 	get_num_huge_pages() (in module autotest.client.shared.utils_memory)

 	get_num_logical_cpus_per_socket() (in module autotest.client.shared.utils)

 	get_nvr_info() (autotest.client.shared.utils_koji.RPMFileNameInfo method)

 	get_open_func() (autotest.client.shared.hosts.base_classes.Host method)

 	get_os_vendor() (in module autotest.client.base_utils)

 	get_package() (autotest.client.tools.JUnit_api.testsuiteType method)

 	get_package_data() (in module autotest.client.setup)

 	get_package_dir() (in module autotest.client.setup)

 	get_package_management() (autotest.client.shared.software_manager.SystemInspector method)

 	get_package_name() (autotest.client.shared.base_packages.BasePackageManager method)

 	get_packages() (in module autotest.client.setup)

 	get_packed() (autotest.client.tools.boottool.EfiVar method)

 	get_param() (autotest.client.bkr_xml.Task method)

 	get_parent_class() (autotest.client.net.net_tc.qdisc method)

 	(autotest.client.net.net_tc.tcclass method)

 	get_parent_pid() (in module autotest.client.tools.crash_handler)

 	get_parent_qdisc() (autotest.client.net.net_tc.tcfilter method)

 	get_partition_list() (in module autotest.client.partition)

 	get_patches() (autotest.client.kernel.kernel method)

 	get_path() (in module autotest.client.shared.utils)

 	get_pid_cpu() (in module autotest.client.shared.utils)

 	get_pid_from_file() (in module autotest.client.shared.utils)

 	get_pid_path() (in module autotest.client.shared.utils)

 	get_pids() (autotest.client.shared.utils_cgroup.Cgroup method)

 	get_pkg_base_url() (autotest.client.shared.utils_koji.KojiClient method)

 	get_pkg_info() (autotest.client.shared.utils_koji.KojiClient method)

 	get_pkg_rpm_file_names() (autotest.client.shared.utils_koji.KojiClient method)

 	get_pkg_rpm_info() (autotest.client.shared.utils_koji.KojiClient method)

 	get_pkg_rpm_names() (autotest.client.shared.utils_koji.KojiClient method)

 	get_pkg_urls() (autotest.client.shared.utils_koji.KojiClient method)

 	get_pkgs() (autotest.client.shared.utils_koji.KojiClient method)

 	get_priority() (autotest.client.net.net_tc.tcfilter method)

 	get_process_name() (in module autotest.client.shared.utils)

 	get_processed_tests() (autotest.client.harness_beaker.harness_beaker method)

 	get_properties() (autotest.client.tools.JUnit_api.testsuite method)

 	get_property() (autotest.client.shared.utils_cgroup.Cgroup method)

 	(autotest.client.tools.JUnit_api.propertiesType method)

 	get_protocol() (autotest.client.net.net_tc.tcfilter method)

 	get_pwd() (autotest.client.shared.utils_cgroup.CgroupModules method)

 	get_recipe() (autotest.client.bkr_proxy.BkrProxy method)

 	get_recipe_from_LC() (autotest.client.harness_beaker.harness_beaker method)

 	get_relative_path() (in module autotest.client.shared.utils)

 	get_repo() (in module autotest.client.shared.git)

 	get_result() (autotest.client.shared.test.Subtest class method)

 	get_results_dir_list() (in module autotest.client.tools.crash_handler)

 	get_scratch_base_url() (autotest.client.shared.utils_koji.KojiClient method)

 	get_scratch_pkg_urls() (autotest.client.shared.utils_koji.KojiClient method)

 	get_scratch_pkgs() (autotest.client.shared.utils_koji.KojiClient method)

 	get_screen_text() (autotest.client.shared.progressbar.ProgressBar method)

 	get_scripts() (in module autotest.client.setup)

 	get_section_values() (autotest.client.shared.settings.Settings method)

 	get_server_log_dir() (autotest.client.shared.logging_config.LoggingConfig class method)

 	get_session_options() (autotest.client.shared.utils_koji.KojiClient method)

 	get_slave_interfaces() (autotest.client.net.net_utils.bonding method)

 	get_speed() (autotest.client.net.net_utils.network_interface method)

 	get_state() (autotest.client.shared.base_job.base_job method)

 	get_stats() (autotest.client.net.net_utils.network_interface method)

 	get_stats_diff() (autotest.client.net.net_utils.network_interface method)

 	get_status() (autotest.client.shared.utils.FileFieldMonitor method)

 	get_stderr() (autotest.client.shared.utils.AsyncJob method)

 	get_stderr_level() (in module autotest.client.shared.utils)

 	get_stdout() (autotest.client.shared.utils.AsyncJob method)

 	get_stream_tee_file() (in module autotest.client.shared.utils)

 	get_string() (autotest.client.shared.enum.Enum method)

 	get_submodules() (in module autotest.client.base_utils)

 	get_supported_link_modes() (autotest.client.net.net_utils.network_interface method)

 	get_system_err() (autotest.client.tools.JUnit_api.testsuite method)

 	get_system_out() (autotest.client.tools.JUnit_api.testsuite method)

 	get_systemmap() (in module autotest.client.base_utils)

 	get_tarball_name() (autotest.client.shared.base_packages.BasePackageManager static method)

 	get_target_id() (autotest.client.shared.iscsi.Iscsi method)

 	get_tasks() (in module autotest.client.cpuset)

 	get_temp_file_path() (in module autotest.client.shared.test_utils.config_change_validation)

 	get_test_keyval() (in module autotest.client.tools.regression)

 	get_test_name() (autotest.client.harness_beaker.harness_beaker method)

 	get_testcase() (autotest.client.tools.JUnit_api.testsuite method)

 	get_tests() (autotest.client.tools.JUnit_api.testsuite method)

 	get_testsuite() (autotest.client.tools.JUnit_api.testsuites method)

 	get_text_result() (autotest.client.shared.test.Subtest class method)

 	get_thread_cpu() (in module autotest.client.shared.utils)

 	get_time() (autotest.client.tools.JUnit_api.testcaseType method)

 	(autotest.client.tools.JUnit_api.testsuite method)

 	get_timestamp() (autotest.client.tools.JUnit_api.testsuite method)

 	get_timestamped_log_name() (autotest.client.shared.logging_config.LoggingConfig class method)

 	get_title_for_kernel() (autotest.client.tools.boottool.Grubby method)

 	get_titles() (autotest.client.tools.boottool.Grubby method)

 	get_tmp_dir() (autotest.client.shared.hosts.base_classes.Host method)

 	get_top_commit() (autotest.client.shared.git.GitRepoHelper method)

 	get_top_tag() (autotest.client.shared.git.GitRepoHelper method)

 	get_type() (autotest.client.tools.boottool.Grubby method)

 	(autotest.client.tools.JUnit_api.errorType method)

 	(autotest.client.tools.JUnit_api.failureType method)

 	get_unique_name() (in module autotest.client.shared.utils)

 	get_unmounted_partition_list() (in module autotest.client.partition)

 	get_unused_port() (in module autotest.client.shared.utils)

 	get_updated_content() (autotest.client.tools.boottool.EliloConf method)

 	get_uptime() (in module autotest.client.base_utils)

 	get_value() (autotest.client.shared.enum.Enum method)

 	(autotest.client.shared.settings.Settings method)

 	(autotest.client.tools.JUnit_api.propertyType method)

 	get_valueOf_() (autotest.client.tools.JUnit_api.errorType method)

 	(autotest.client.tools.JUnit_api.failureType method)

 	get_vendor_from_pci_id() (in module autotest.client.shared.utils)

 	get_version() (autotest.client.shared.openvswitch.OpenVSwitchControl class method)

 	(autotest.client.shared.openvswitch.ServiceManagerInterface class method)

 	(autotest.client.shared.utils.VersionableClass class method)

 	(in module autotest.client.shared.version)

 	get_vmlinux() (in module autotest.client.base_utils)

 	get_wait_up_processes() (autotest.client.shared.hosts.base_classes.Host method)

 	get_wakeon() (autotest.client.net.net_utils.network_interface method)

 	get_xen_build_ver() (autotest.client.xen.xen method)

 	get_xen_kernel_build_ver() (autotest.client.xen.xen method)

 	getAvg() (autotest.client.tools.regression.Sample method)

 	getAvgPercent() (autotest.client.tools.regression.Sample method)

 	getSD() (autotest.client.tools.regression.Sample method)

 	getSDRate() (autotest.client.tools.regression.Sample method)

 	getTestCaseNames() (autotest.client.shared.test_utils.unittest.TestLoader method)

 	(in module autotest.client.shared.test_utils.unittest)

 	getTtestPvalue() (autotest.client.tools.regression.Sample method)

 	git_archive_cmd_pattern (autotest.client.shared.base_packages.GitFetcher attribute)

 	git_cmd() (autotest.client.shared.git.GitRepoHelper method)

 	GitFetcher (class in autotest.client.shared.base_packages)

 	GitRepoHelper (class in autotest.client.shared.git)

 	global_level (autotest.client.shared.logging_config.LoggingConfig attribute)

 	grep() (in module autotest.client.base_utils)

 	Grubby (class in autotest.client.tools.boottool)

 	grubby_build() (autotest.client.tools.boottool.Grubby method)

 	grubby_install() (autotest.client.tools.boottool.Grubby method)

 	grubby_install_backup() (autotest.client.tools.boottool.Grubby method)

 	grubby_install_fetch_tarball() (autotest.client.tools.boottool.Grubby method)

 	grubby_install_patch_makefile() (autotest.client.tools.boottool.Grubby method)

 	guess_type() (in module autotest.client.shared.magic)

 	GUID_CONTENT (autotest.client.tools.boottool.EfiVar attribute)

 	GUID_FMT (autotest.client.tools.boottool.EfiVar attribute)

H

 	
 	handle_persistent_option() (autotest.client.job.base_client_job method)

 	handle_recipe() (autotest.client.bkr_xml.BeakerXMLParser method)

 	handle_recipes() (autotest.client.bkr_xml.BeakerXMLParser method)

 	handle_starttag() (autotest.client.shared.utils_koji.KojiDirIndexParser method)

 	handle_task() (autotest.client.bkr_xml.BeakerXMLParser method)

 	handle_task_param() (autotest.client.bkr_xml.BeakerXMLParser method)

 	handle_task_params() (autotest.client.bkr_xml.BeakerXMLParser method)

 	handle_tasks() (autotest.client.bkr_xml.BeakerXMLParser method)

 	HARDWARE_REPAIR_REQUEST_THRESHOLD (autotest.client.shared.hosts.base_classes.Host attribute)

 	harness (class in autotest.client.harness)

 	harness_autoserv (class in autotest.client.harness_autoserv)

 	harness_beaker (class in autotest.client.harness_beaker)

 	harness_select() (autotest.client.job.base_client_job method)

 	harness_simple (class in autotest.client.harness_simple)

 	harness_standalone (class in autotest.client.harness_standalone)

 	HarnessError

 	HarnessException

 	has() (autotest.client.shared.base_job.job_state method)

 	has_failed() (autotest.client.shared.test.Subtest class method)

 	has_pbzip2() (in module autotest.client.shared.base_packages)

 	hasContent_() (autotest.client.tools.JUnit_api.errorType method)

 	(autotest.client.tools.JUnit_api.failureType method)

 	(autotest.client.tools.JUnit_api.propertiesType method)

 	(autotest.client.tools.JUnit_api.propertyType method)

 	(autotest.client.tools.JUnit_api.system_err method)

 	(autotest.client.tools.JUnit_api.system_out method)

 	(autotest.client.tools.JUnit_api.testcaseType method)

 	(autotest.client.tools.JUnit_api.testsuite method)

 	(autotest.client.tools.JUnit_api.testsuiteType method)

 	(autotest.client.tools.JUnit_api.testsuites method)

 	
 	hash() (in module autotest.client.shared.utils)

 	hash_file() (in module autotest.client.base_utils)

 	HDR_LEN (autotest.client.net.net_utils.ethernet attribute)

 	header() (in module autotest.client.os_dep)

 	headers() (in module autotest.client.os_dep)

 	help() (autotest.client.cmdparser.CommandParser class method)

 	Host (class in autotest.client.shared.hosts.base_classes)

 	HostInstallProfileError

 	HostInstallTimeoutError

 	HostRunErrorMixIn

 	HOURS_TO_WAIT_FOR_RECOVERY (autotest.client.shared.hosts.base_classes.Host attribute)

 	HttpFetcher (class in autotest.client.shared.base_packages)

 	human_format() (in module autotest.client.base_utils)

I

 	
 	id() (autotest.client.net.net_tc.qdisc method)

 	(autotest.client.net.net_tc.tcclass method)

 	(autotest.client.shared.test_utils.unittest.ClassTestSuite method)

 	(autotest.client.shared.test_utils.unittest.FunctionTestCase method)

 	(autotest.client.shared.test_utils.unittest.TestCase method)

 	import_module() (in module autotest.client.setup_modules)

 	import_site_class() (in module autotest.client.shared.utils)

 	import_site_function() (in module autotest.client.shared.utils)

 	import_site_module() (in module autotest.client.shared.utils)

 	import_site_symbol() (in module autotest.client.shared.utils)

 	include_partition() (autotest.client.fsdev_mgr.BaseFsdevManager method)

 	increment() (autotest.client.job.status_indenter method)

 	(autotest.client.shared.base_job.status_indenter method)

 	(autotest.client.shared.progressbar.ProgressBar method)

 	indent (autotest.client.job.status_indenter attribute)

 	(autotest.client.shared.base_job.status_indenter attribute)

 	init() (autotest.client.shared.git.GitRepoHelper method)

 	(autotest.client.shared.utils_cgroup.CgroupModules method)

 	init_db() (autotest.client.shared.openvswitch.OpenVSwitch method)

 	init_new() (autotest.client.shared.openvswitch.OpenVSwitch method)

 	init_recipe_from_beaker() (autotest.client.harness_beaker.harness_beaker method)

 	init_system() (autotest.client.shared.openvswitch.OpenVSwitchSystem method)

 	init_task_params() (autotest.client.harness_beaker.harness_beaker method)

 	init_test() (in module autotest.client.setup_job)

 	initialize() (autotest.client.profiler.profiler method)

 	(autotest.client.profilers.blktrace.blktrace.blktrace method)

 	(autotest.client.profilers.catprofile.catprofile.catprofile method)

 	(autotest.client.profilers.cmdprofile.cmdprofile.cmdprofile method)

 	(autotest.client.profilers.cpistat.cpistat.cpistat method)

 	(autotest.client.profilers.ftrace.ftrace.ftrace method)

 	(autotest.client.profilers.inotify.inotify.inotify method)

 	(autotest.client.profilers.iostat.iostat.iostat method)

 	(autotest.client.profilers.kvm_stat.kvm_stat.kvm_stat method)

 	(autotest.client.profilers.lockmeter.lockmeter.lockmeter method)

 	(autotest.client.profilers.lttng.lttng.lttng method)

 	(autotest.client.profilers.mpstat.mpstat.mpstat method)

 	(autotest.client.profilers.oprofile.oprofile.oprofile method)

 	(autotest.client.profilers.perf.perf.perf method)

 	(autotest.client.profilers.readprofile.readprofile.readprofile method)

 	(autotest.client.profilers.sar.sar.sar method)

 	(autotest.client.profilers.systemtap.systemtap.systemtap method)

 	(autotest.client.profilers.vmstat.vmstat.vmstat method)

 	(autotest.client.shared.test.base_test method)

 	(autotest.client.shared.utils_cgroup.Cgroup method)

 	inner_containers_of() (in module autotest.client.cpuset)

 	inotify (class in autotest.client.profilers.inotify.inotify)

 	insert_property() (autotest.client.tools.JUnit_api.propertiesType method)

 	insert_testcase() (autotest.client.tools.JUnit_api.testsuite method)

 	insert_testsuite() (autotest.client.tools.JUnit_api.testsuites method)

 	install() (autotest.client.kernel.kernel method)

 	(autotest.client.kernel.rpm_kernel method)

 	(autotest.client.kernel.rpm_kernel_suse method)

 	(autotest.client.kernel.srpm_kernel method)

 	(autotest.client.shared.hosts.base_classes.Host method)

 	(autotest.client.shared.software_manager.AptBackend method)

 	(autotest.client.shared.software_manager.YumBackend method)

 	(autotest.client.shared.software_manager.ZypperBackend method)

 	(autotest.client.xen.xen method)

 	install_distro_packages() (in module autotest.client.shared.software_manager)

 	install_pkg() (autotest.client.job.base_client_job method)

 	(autotest.client.shared.base_packages.BasePackageManager method)

 	install_pkg_post() (autotest.client.shared.base_packages.GitFetcher method)

 	(autotest.client.shared.base_packages.RepositoryFetcher method)

 	install_pkg_setup() (autotest.client.shared.base_packages.RepositoryFetcher method)

 	install_what_provides() (autotest.client.shared.software_manager.BaseBackend method)

 	INSTALLED_OUTPUT (autotest.client.shared.software_manager.DpkgBackend attribute)

 	InstallError

 	interactive_download() (in module autotest.client.shared.utils)

 	InterruptedThread (class in autotest.client.shared.utils)

 	InvalidAutotestResultDirError

 	InvalidOutputDirError

 	io_attr() (in module autotest.client.cpuset)

 	iostat (class in autotest.client.profilers.iostat.iostat)

 	
 	ip_to_long() (in module autotest.client.shared.utils)

 	is_autoneg_advertised() (autotest.client.net.net_utils.network_interface method)

 	is_autoneg_on() (autotest.client.net.net_utils.network_interface method)

 	is_bondable() (autotest.client.net.net_utils.bonding method)

 	is_cgroup() (autotest.client.shared.utils_cgroup.Cgroup method)

 	is_command_valid() (autotest.client.shared.utils_koji.KojiClient method)

 	is_config_valid() (autotest.client.shared.utils_koji.KojiClient method)

 	is_down() (autotest.client.net.net_utils.network_interface method)

 	(autotest.client.net.net_utils_mock.network_interface_mock method)

 	is_enabled() (autotest.client.net.net_utils.bonding method)

 	is_end() (autotest.client.shared.base_job.status_log_entry method)

 	is_failure() (in module autotest.client.shared.log)

 	is_file_and_readable() (in module autotest.client.os_dep)

 	is_file_and_rx() (in module autotest.client.os_dep)

 	is_finished() (autotest.client.shared.base_syncdata.SessionData method)

 	is_full_duplex() (autotest.client.net.net_utils.network_interface method)

 	is_installed() (autotest.client.shared.openvswitch.OpenVSwitchSystem method)

 	is_instance_comparator (class in autotest.client.shared.test_utils.mock)

 	is_int() (in module autotest.client.tools.regression)

 	is_linux_fs_type() (in module autotest.client.partition)

 	is_loopback_enabled() (autotest.client.net.net_utils.network_interface method)

 	(autotest.client.net.net_utils_mock.network_interface_mock method)

 	is_mounted() (in module autotest.client.shared.utils)

 	is_pause_autoneg_on() (autotest.client.net.net_utils.network_interface method)

 	is_pkg_spec_build_valid() (autotest.client.shared.utils_koji.KojiClient method)

 	is_pkg_spec_tag_valid() (autotest.client.shared.utils_koji.KojiClient method)

 	is_pkg_valid() (autotest.client.shared.utils_koji.KojiClient method)

 	is_port_free() (in module autotest.client.shared.utils)

 	is_release_candidate() (in module autotest.client.kernel_versions)

 	(in module autotest.client.shared.kernel_versions)

 	is_released_kernel() (in module autotest.client.kernel_versions)

 	(in module autotest.client.shared.kernel_versions)

 	is_right_version() (autotest.client.shared.openvswitch.OpenVSwitchControlCli_140 class method)

 	(autotest.client.shared.openvswitch.OpenVSwitchControlDB_140 class method)

 	(autotest.client.shared.openvswitch.ServiceManagerSystemD class method)

 	(autotest.client.shared.openvswitch.ServiceManagerSysvinit class method)

 	(autotest.client.shared.utils.VersionableClass class method)

 	is_root_cgroup() (autotest.client.shared.utils_cgroup.Cgroup method)

 	is_rx_pause_on() (autotest.client.net.net_utils.network_interface method)

 	is_rx_summing_on() (autotest.client.net.net_utils.network_interface method)

 	is_satisfied_by() (autotest.client.shared.test_utils.mock.anything_comparator method)

 	(autotest.client.shared.test_utils.mock.argument_comparator method)

 	(autotest.client.shared.test_utils.mock.equality_comparator method)

 	(autotest.client.shared.test_utils.mock.is_instance_comparator method)

 	(autotest.client.shared.test_utils.mock.is_string_comparator method)

 	(autotest.client.shared.test_utils.mock.regex_comparator method)

 	is_scatter_gather_on() (autotest.client.net.net_utils.network_interface method)

 	is_shutting_down() (autotest.client.shared.hosts.base_classes.Host method)

 	is_start() (autotest.client.shared.base_job.status_log_entry method)

 	is_string_comparator (class in autotest.client.shared.test_utils.mock)

 	is_tso_on() (autotest.client.net.net_utils.network_interface method)

 	is_tx_pause_on() (autotest.client.net.net_utils.network_interface method)

 	is_tx_summing_on() (autotest.client.net.net_utils.network_interface method)

 	is_up() (autotest.client.shared.hosts.base_classes.Host method)

 	is_url() (in module autotest.client.shared.utils)

 	is_valid() (autotest.client.shared.utils_koji.KojiPkgSpec method)

 	is_valid_disk() (in module autotest.client.partition)

 	is_valid_partition() (in module autotest.client.partition)

 	is_valid_status() (in module autotest.client.shared.log)

 	isatty() (autotest.client.shared.logging_manager.LoggingFile method)

 	Iscsi (class in autotest.client.shared.iscsi)

 	iscsi_discover() (in module autotest.client.shared.iscsi)

 	iscsi_get_nodes() (in module autotest.client.shared.iscsi)

 	iscsi_get_sessions() (in module autotest.client.shared.iscsi)

 	iscsi_login() (in module autotest.client.shared.iscsi)

 	iscsi_logout() (in module autotest.client.shared.iscsi)

 	iso9660() (in module autotest.client.shared.iso9660)

 	Iso9660IsoInfo (class in autotest.client.shared.iso9660)

 	Iso9660IsoRead (class in autotest.client.shared.iso9660)

 	Iso9660Mount (class in autotest.client.shared.iso9660)

 	items() (autotest.client.shared.backports.collections.OrderedDict.OrderedDict method)

 	iteritems() (autotest.client.shared.backports.collections.OrderedDict.OrderedDict method)

 	iterkeys() (autotest.client.shared.backports.collections.OrderedDict.OrderedDict method)

 	itervalues() (autotest.client.shared.backports.collections.OrderedDict.OrderedDict method)

J

 	
 	job (autotest.client.shared.hosts.base_classes.Host attribute)

 	(class in autotest.client.job)

 	job_directory (class in autotest.client.shared.base_job)

 	job_directory.JobDirectoryException

 	job_directory.MissingDirectoryException

 	job_directory.UncreatableDirectoryException

 	
 	job_directory.UnwritableDirectoryException

 	job_state (class in autotest.client.shared.base_job)

 	job_statuses (autotest.client.shared.base_job.TAPReport attribute)

 	JobError

 	join() (autotest.client.shared.utils.InterruptedThread method)

 	join_bg_jobs() (in module autotest.client.shared.utils)

 	join_command() (autotest.client.profilers.ftrace.ftrace.ftrace static method)

K

 	
 	kernel (class in autotest.client.kernel)

 	kernel() (autotest.client.job.base_client_job method)

 	kernel_config (class in autotest.client.kernel_config)

 	kernel_string (autotest.client.kernel.rpm_kernel attribute)

 	(autotest.client.kernel.rpm_kernel_suse attribute)

 	kernelexpand() (autotest.client.kernel.kernel method)

 	keys() (autotest.client.shared.backports.collections.OrderedDict.OrderedDict method)

 	
 	keyval_to_line() (autotest.client.tools.boottool.EliloConf method)

 	kill_process_tree() (in module autotest.client.shared.utils)

 	kill_watchdog() (autotest.client.harness_beaker.harness_beaker method)

 	KojiClient (class in autotest.client.shared.utils_koji)

 	KojiDirIndexParser (class in autotest.client.shared.utils_koji)

 	KojiPkgSpec (class in autotest.client.shared.utils_koji)

 	KojiScratchPkgSpec (class in autotest.client.shared.utils_koji)

 	kvm_stat (class in autotest.client.profilers.kvm_stat.kvm_stat)

L

 	
 	last_boot_tag (autotest.client.shared.base_job.base_job attribute)

 	LD_SO_CONF (autotest.client.os_dep.Ldconfig attribute)

 	Ldconfig (class in autotest.client.os_dep)

 	ldconfig() (autotest.client.os_dep.Ldconfig method)

 	Ldconfig.DirEntry (class in autotest.client.os_dep)

 	libraries() (in module autotest.client.os_dep)

 	library() (in module autotest.client.os_dep)

 	line_to_keyval() (autotest.client.tools.boottool.EliloConf method)

 	LinuxDistro (class in autotest.client.shared.distro), [1]

 	list() (autotest.client.net.net_utils.network_utils method)

 	list_all() (autotest.client.shared.software_manager.DpkgBackend method)

 	(autotest.client.shared.software_manager.RpmBackend method)

 	list_br() (autotest.client.shared.openvswitch.OpenVSwitchControl method)

 	(autotest.client.shared.openvswitch.OpenVSwitchControlCli_140 method)

 	list_files() (autotest.client.shared.software_manager.DpkgBackend method)

 	(autotest.client.shared.software_manager.RpmBackend method)

 	list_files_glob() (autotest.client.local_host.LocalHost method)

 	(autotest.client.shared.hosts.base_classes.Host method)

 	list_grep() (in module autotest.client.base_utils)

 	list_mount_devices() (in module autotest.client.partition)

 	list_mount_points() (in module autotest.client.partition)

 	list_ports() (autotest.client.shared.openvswitch.OpenVSwitchControlCli_140 method)

 	list_tests() (autotest.client.cmdparser.CommandParser class method)

 	listen_server (class in autotest.client.shared.base_barrier)

 	load() (in module autotest.client.shared.distro_def)

 	load_all_client_tests() (in module autotest.client.setup_job)

 	load_from_tree() (in module autotest.client.shared.distro_def)

 	load_kvm() (in module autotest.client.kvm_control)

 	load_module() (in module autotest.client.base_utils)

 	load_profiler() (autotest.client.profilers.profilers method)

 	(autotest.client.shared.profiler_manager.profiler_manager method)

 	load_sched_tunable_values() (autotest.client.fsdev_disks.fsdev_disks method)

 	loaded_module_info() (in module autotest.client.base_utils)

 	loadTestsFromModule() (autotest.client.shared.test_utils.unittest.TestLoader method)

 	loadTestsFromName() (autotest.client.shared.test_utils.unittest.TestLoader method)

 	
 	loadTestsFromNames() (autotest.client.shared.test_utils.unittest.TestLoader method)

 	loadTestsFromTestCase() (autotest.client.shared.test_utils.unittest.TestLoader method)

 	LocalFilesystemFetcher (class in autotest.client.shared.base_packages)

 	LocalHost (class in autotest.client.local_host)

 	LOCALTIME_FIELD (autotest.client.shared.base_job.status_log_entry attribute)

 	locate() (in module autotest.client.base_utils)

 	lock_file() (in module autotest.client.shared.utils)

 	lockmeter (class in autotest.client.profilers.lockmeter.lockmeter)

 	log() (autotest.client.xen.xen method)

 	log_after_each_iteration() (autotest.client.base_sysinfo.base_sysinfo method)

 	log_after_each_test() (autotest.client.base_sysinfo.base_sysinfo method)

 	log_and_ignore_errors() (in module autotest.client.shared.log)

 	log_append() (autotest.client.shared.test.Subtest class method)

 	log_before_each_iteration() (autotest.client.base_sysinfo.base_sysinfo method)

 	log_before_each_test() (autotest.client.base_sysinfo.base_sysinfo method)

 	log_kernel() (autotest.client.shared.hosts.base_classes.Host method)

 	log_last_traceback() (in module autotest.client.shared.utils)

 	log_line() (in module autotest.client.shared.utils)

 	log_per_reboot_data() (autotest.client.base_sysinfo.base_sysinfo method)

 	log_reboot() (autotest.client.shared.hosts.base_classes.Host method)

 	log_test_keyvals() (autotest.client.base_sysinfo.base_sysinfo method)

 	logfile (class in autotest.client.base_sysinfo)

 	loggable (class in autotest.client.base_sysinfo)

 	logged_in() (autotest.client.shared.iscsi.Iscsi method)

 	logging_config_object (autotest.client.shared.logging_manager.LoggingManager attribute)

 	LoggingConfig (class in autotest.client.shared.logging_config)

 	LoggingFile (class in autotest.client.shared.logging_manager)

 	LoggingManager (class in autotest.client.shared.logging_manager)

 	login() (autotest.client.shared.iscsi.Iscsi method)

 	logout() (autotest.client.shared.iscsi.Iscsi method)

 	long_to_ip() (in module autotest.client.shared.utils)

 	longMessage (autotest.client.shared.test_utils.unittest.TestCase attribute)

 	lttng (class in autotest.client.profilers.lttng.lttng)

 	lv_check() (in module autotest.client.lv_utils)

 	lv_list() (in module autotest.client.lv_utils)

 	lv_list_all() (in module autotest.client.lv_utils)

M

 	
 	mac_binary_to_string() (autotest.client.net.net_utils.ethernet static method)

 	mac_string_to_binary() (autotest.client.net.net_utils.ethernet static method)

 	machine_install() (autotest.client.shared.hosts.base_classes.Host method)

 	MagicLoggingConfig (class in autotest.client.shared.magic)

 	MagicMock (class in autotest.client.shared.mock)

 	MagicTest (class in autotest.client.shared.magic)

 	main (in module autotest.client.shared.test_utils.unittest)

 	main() (autotest.client.autotest_local.AutotestLocalApp method)

 	(in module autotest.client.tools.process_metrics)

 	(in module autotest.client.tools.results2junit)

 	(in module autotest.client.tools.scan_results)

 	make() (in module autotest.client.shared.utils)

 	make_path_bkrcache() (in module autotest.client.bkr_proxy)

 	make_path_cmdlog() (in module autotest.client.bkr_proxy)

 	make_path_log() (in module autotest.client.bkr_proxy)

 	make_path_recipe() (in module autotest.client.bkr_proxy)

 	make_path_result() (in module autotest.client.bkr_proxy)

 	make_path_searcher() (in module autotest.client.os_dep)

 	make_path_status() (in module autotest.client.bkr_proxy)

 	make_path_watchdog() (in module autotest.client.bkr_proxy)

 	make_temp_file_copies() (in module autotest.client.shared.test_utils.config_change_validation)

 	makeSuite() (in module autotest.client.shared.test_utils.unittest)

 	manage_stderr() (autotest.client.shared.logging_manager.LoggingManager method)

 	manage_stdout() (autotest.client.shared.logging_manager.LoggingManager method)

 	manage_stream() (autotest.client.shared.logging_manager.LoggingManager method)

 	map_drive_name() (autotest.client.fsdev_mgr.BaseFsdevManager method)

 	mask_function (class in autotest.client.shared.test_utils.mock)

 	match() (autotest.client.shared.test_utils.mock.base_mapping method)

 	(autotest.client.shared.test_utils.mock.function_any_args_mapping method)

 	match_ext_options() (in module autotest.client.fsinfo)

 	match_fs() (in module autotest.client.fsdev_disks)

 	match_mkfs_option() (in module autotest.client.fsinfo)

 	match_xfs_options() (in module autotest.client.fsinfo)

 	matches_global_option_to_add() (autotest.client.tools.boottool.EliloConf method)

 	matches_global_option_to_remove() (autotest.client.tools.boottool.EliloConf method)

 	matrix_to_string() (in module autotest.client.shared.utils)

 	MAX_RECURSION_DEPTH (autotest.client.os_dep.Ldconfig attribute)

 	mbytes_per_mem_node() (in module autotest.client.cpuset)

 	memory_path() (in module autotest.client.cpuset)

 	
 	mems_path() (in module autotest.client.cpuset)

 	memtotal() (in module autotest.client.shared.utils_memory)

 	merge_configs() (autotest.client.shared.settings.Settings method)

 	merge_ext_features() (in module autotest.client.fsinfo)

 	merge_trees() (in module autotest.client.shared.utils)

 	mirror_kernel_components() (in module autotest.client.kernelexpand)

 	MissingFormatter

 	mk_cgroup() (autotest.client.shared.utils_cgroup.Cgroup method)

 	mk_cgroup_cgcreate() (autotest.client.shared.utils_cgroup.Cgroup method)

 	mkfs() (autotest.client.partition.partition method)

 	mkfs_all_disks() (in module autotest.client.fsdev_disks)

 	mkfs_exec() (autotest.client.partition.partition method)

 	mkfs_flags (autotest.client.partition.FsOptions attribute)

 	mkinitrd() (autotest.client.kernel.kernel method)

 	Mock (class in autotest.client.shared.mock)

 	mock_add_spec() (autotest.client.shared.mock.MagicMock method)

 	(autotest.client.shared.mock.NonCallableMagicMock method)

 	(autotest.client.shared.mock.NonCallableMock method)

 	mock_calls (autotest.client.shared.mock.NonCallableMock attribute)

 	mock_class (class in autotest.client.shared.test_utils.mock)

 	mock_function (class in autotest.client.shared.test_utils.mock)

 	mock_god (class in autotest.client.shared.test_utils.mock)

 	mock_io() (autotest.client.shared.test_utils.mock.mock_god method)

 	mock_open() (in module autotest.client.shared.mock)

 	mock_up() (autotest.client.shared.test_utils.mock.mock_god method)

 	module_is_loaded() (in module autotest.client.base_utils)

 	modules_needed() (in module autotest.client.kernel_config)

 	monitor_disk_usage() (autotest.client.job.base_client_job method)

 	mount() (autotest.client.partition.partition method)

 	(in module autotest.client.shared.utils)

 	mount_options (autotest.client.partition.FsOptions attribute)

 	mountpoint (autotest.client.profilers.ftrace.ftrace.ftrace attribute)

 	move_self_into_container() (in module autotest.client.cpuset)

 	move_tasks_into_container() (in module autotest.client.cpuset)

 	mpstat (class in autotest.client.profilers.mpstat.mpstat)

 	my_available_exclusive_mem_nodes() (in module autotest.client.cpuset)

 	my_container_name() (in module autotest.client.cpuset)

 	my_lock() (in module autotest.client.cpuset)

 	my_mem_nodes() (in module autotest.client.cpuset)

 	my_unlock() (in module autotest.client.cpuset)

N

 	
 	name (autotest.client.net.net_tc.netem attribute)

 	(autotest.client.net.net_tc.pfifo attribute)

 	(autotest.client.net.net_tc.prio attribute)

 	name_for_file() (autotest.client.shared.distro.Probe method), [1]

 	name_for_file_contains() (autotest.client.shared.distro.Probe method), [1]

 	namedtuple() (in module autotest.client.shared.backports.collections.namedtuple)

 	need_fake_numa() (in module autotest.client.cpuset)

 	need_mem_containers() (in module autotest.client.cpuset)

 	net_recv_object() (in module autotest.client.shared.base_syncdata)

 	net_send_object() (in module autotest.client.shared.base_syncdata)

 	NetCommunicationError

 	netem (class in autotest.client.net.net_tc)

 	netif() (in module autotest.client.net.net_utils)

 	netif_stub (class in autotest.client.net.net_utils_mock)

 	netutils_netif() (in module autotest.client.net.net_utils_mock)

 	network() (in module autotest.client.net.net_utils)

 	network_destabilizing (autotest.client.shared.test.base_test attribute)

 	network_interface (class in autotest.client.net.net_utils)

 	network_interface_mock (class in autotest.client.net.net_utils_mock)

 	network_utils (class in autotest.client.net.net_utils)

 	
 	new_handle() (in module autotest.client.net.net_tc)

 	NEW_VAR (autotest.client.tools.boottool.EfiToolSys attribute)

 	next() (in module autotest.client.shared.backports)

 	next_step() (autotest.client.job.base_client_job method)

 	next_step_append() (autotest.client.job.base_client_job method)

 	next_step_prepend() (autotest.client.job.base_client_job method)

 	NO_DEFAULT (autotest.client.shared.base_job.job_state attribute)

 	NO_MODE (autotest.client.net.net_utils.bonding attribute)

 	node_avail_kbytes() (in module autotest.client.cpuset)

 	node_size() (in module autotest.client.shared.utils_memory)

 	nodes_avail_mbytes() (in module autotest.client.cpuset)

 	NonCallableMagicMock (class in autotest.client.shared.mock)

 	NonCallableMock (class in autotest.client.shared.mock)

 	NONEXISTENT_ATTRIBUTE (autotest.client.shared.test_utils.mock.mock_god attribute)

 	noop() (autotest.client.job.base_client_job method)

 	normalize_hostname() (in module autotest.client.shared.utils)

 	NotAvailableError

 	nuke_pid() (in module autotest.client.shared.utils)

 	nuke_subprocess() (in module autotest.client.shared.utils)

 	numa_nodes() (in module autotest.client.shared.utils_memory)

O

 	
 	only() (autotest.client.shared.profiler_manager.profiler_manager method)

 	open() (autotest.client.net.net_utils.raw_socket method)

 	(autotest.client.net.net_utils_mock.os_stub method)

 	open_file() (autotest.client.shared.pidfile.PidFileManager method)

 	open_write_close() (in module autotest.client.shared.utils)

 	OpenVSwitch (class in autotest.client.shared.openvswitch)

 	OpenVSwitchControl (class in autotest.client.shared.openvswitch)

 	OpenVSwitchControlCli (class in autotest.client.shared.openvswitch)

 	OpenVSwitchControlCli_140 (class in autotest.client.shared.openvswitch)

 	OpenVSwitchControlDB (class in autotest.client.shared.openvswitch)

 	OpenVSwitchControlDB_140 (class in autotest.client.shared.openvswitch)

 	OpenVSwitchSystem (class in autotest.client.shared.openvswitch)

 	
 	oprofile (class in autotest.client.profilers.oprofile.oprofile)

 	opt_string2dict() (in module autotest.client.fsinfo)

 	option_parser_usage (autotest.client.tools.boottool.OptionParser attribute)

 	OptionParser (class in autotest.client.tools.boottool)

 	opts_get_action() (autotest.client.tools.boottool.OptionParser method)

 	opts_has_action() (autotest.client.tools.boottool.OptionParser method)

 	OrderedDict (class in autotest.client.shared.backports.collections.OrderedDict)

 	os_open() (in module autotest.client.net.net_utils_mock)

 	os_stub (class in autotest.client.net.net_utils_mock)

 	output_prepare() (autotest.client.shared.utils.AsyncJob method)

 	(autotest.client.shared.utils.BgJob method)

 	override_value() (autotest.client.shared.settings.Settings method)

 	ovs_vsctl() (autotest.client.shared.openvswitch.OpenVSwitchControlCli_140 method)

P

 	
 	pack() (autotest.client.net.net_utils.ethernet static method)

 	PACKAGE_TYPE (autotest.client.shared.software_manager.DpkgBackend attribute)

 	(autotest.client.shared.software_manager.RpmBackend attribute)

 	PackageError

 	PackageFetchError

 	PackageInstallError

 	PackageManager (class in autotest.client.shared.packages)

 	PackageRemoveError

 	PackageUploadError

 	PackagingError

 	parallel() (autotest.client.job.base_client_job method)

 	(in module autotest.client.partition)

 	(in module autotest.client.shared.utils)

 	parse() (autotest.client.shared.base_job.status_log_entry class method)

 	(autotest.client.shared.utils_koji.KojiPkgSpec method)

 	(autotest.client.shared.utils_koji.KojiScratchPkgSpec method)

 	parse_args() (autotest.client.cmdparser.CommandParser method)

 	(autotest.client.harness_beaker.harness_beaker method)

 	parse_cmdline() (autotest.client.autotest_local.AutotestLocalApp method)

 	parse_conf() (autotest.client.os_dep.Ldconfig method)

 	parse_config_file() (autotest.client.shared.settings.Settings method)

 	parse_control() (in module autotest.client.shared.control_data)

 	parse_entry() (in module autotest.client.tools.boottool)

 	parse_ethtool() (autotest.client.net.net_utils.network_interface method)

 	parse_from_file() (autotest.client.bkr_xml.BeakerXMLParser method)

 	parse_lsmod_for_module() (in module autotest.client.base_utils)

 	parse_mke2fs_conf() (in module autotest.client.fsinfo)

 	parse_quickcmd() (autotest.client.harness_beaker.harness_beaker method)

 	parse_results() (in module autotest.client.tools.results2junit)

 	(in module autotest.client.tools.scan_results)

 	parse_results_dir() (in module autotest.client.shared.report)

 	parse_ssh_path() (in module autotest.client.shared.base_packages)

 	parse_tarball_name() (autotest.client.shared.base_packages.BasePackageManager static method)

 	parse_unified_diff_output() (in module autotest.client.shared.test_utils.config_change_validation)

 	parse_xml() (autotest.client.bkr_xml.BeakerXMLParser method)

 	partition (class in autotest.client.partition)

 	partition() (autotest.client.job.base_client_job method)

 	partname_to_device() (in module autotest.client.partition)

 	passed (autotest.client.shared.test.Subtest attribute)

 	patch() (autotest.client.kernel.kernel method)

 	(in module autotest.client.shared.mock)

 	path_exists() (autotest.client.shared.hosts.base_classes.Host method)

 	path_joiner() (in module autotest.client.os_dep)

 	perf (class in autotest.client.profilers.perf.perf)

 	pfifo (class in autotest.client.net.net_tc)

 	pickle_dump() (autotest.client.kernel.kernel method)

 	pickle_load() (in module autotest.client.base_utils)

 	PICKLE_PROTOCOL (autotest.client.shared.base_job.job_state attribute)

 	pid_exists() (in module autotest.client.shared.utils)

 	pid_is_alive() (in module autotest.client.shared.utils)

 	
 	PidFileManager (class in autotest.client.shared.pidfile)

 	ping_default_gateway() (in module autotest.client.base_utils)

 	pkgdir (autotest.client.shared.base_job.base_job attribute)

 	pop() (autotest.client.shared.backports.collections.OrderedDict.OrderedDict method)

 	pop_execution_context() (autotest.client.shared.base_job.base_job method)

 	popitem() (autotest.client.shared.backports.collections.OrderedDict.OrderedDict method)

 	port_to_br() (autotest.client.shared.openvswitch.OpenVSwitchControlCli_140 method)

 	portal_visible() (autotest.client.shared.iscsi.Iscsi method)

 	postprocess() (autotest.client.shared.test.base_test method)

 	postprocess_iteration() (autotest.client.shared.test.base_test method)

 	powertop (class in autotest.client.profilers.powertop.powertop)

 	prefix (autotest.client.kernel.srpm_kernel attribute)

 	(autotest.client.kernel.srpm_kernel_suse attribute)

 	prep() (autotest.client.kernel.srpm_kernel method)

 	prepare_disks() (in module autotest.client.fsdev_disks)

 	prepare_fsdev() (in module autotest.client.fsdev_disks)

 	prepend_path() (in module autotest.client.base_utils)

 	preprocess_path() (in module autotest.client.kernel)

 	present() (autotest.client.shared.profiler_manager.profiler_manager method)

 	preserve_srcdir (autotest.client.profiler.profiler attribute)

 	(autotest.client.profilers.powertop.powertop.powertop attribute)

 	(autotest.client.shared.test.base_test attribute)

 	print_change_diffs() (in module autotest.client.shared.test_utils.config_change_validation)

 	print_result() (in module autotest.client.tools.scan_results)

 	print_to_tty() (in module autotest.client.base_utils)

 	prio (class in autotest.client.net.net_tc)

 	Probe (class in autotest.client.shared.distro), [1]

 	process_failed_constraints() (autotest.client.shared.test.base_test method)

 	process_is_alive() (in module autotest.client.base_utils)

 	process_mpstat() (autotest.client.net.net_utils.network_utils method)

 	process_or_children_is_defunct() (in module autotest.client.shared.utils)

 	process_output() (autotest.client.shared.utils.AsyncJob method)

 	(autotest.client.shared.utils.BgJob method)

 	profdir (autotest.client.shared.base_job.base_job attribute)

 	profiler (class in autotest.client.profiler)

 	profiler_manager (class in autotest.client.shared.profiler_manager)

 	ProfilerNotPresentError

 	profilers (class in autotest.client.profilers)

 	program_is_alive() (in module autotest.client.shared.utils)

 	ProgressBar (class in autotest.client.shared.progressbar)

 	propertiesType (class in autotest.client.tools.JUnit_api)

 	property_factory() (autotest.client.shared.base_job.job_directory static method)

 	(autotest.client.shared.base_job.job_state static method)

 	PropertyMock (class in autotest.client.shared.mock)

 	propertyType (class in autotest.client.tools.JUnit_api)

 	provides() (autotest.client.shared.software_manager.AptBackend method)

 	(autotest.client.shared.software_manager.YumBackend method)

 	(autotest.client.shared.software_manager.ZypperBackend method)

 	push_execution_context() (autotest.client.shared.base_job.base_job method)

 	PYTHON_BIN_GLOB_STRINGS (autotest.client.shared.base_check_version.base_check_python_version attribute)

Q

 	
 	qdisc (class in autotest.client.net.net_tc)

 	
 	quit() (autotest.client.job.base_client_job method)

R

 	
 	rangelist_to_set() (in module autotest.client.cpuset)

 	raw_socket (class in autotest.client.net.net_utils)

 	read() (autotest.client.net.net_utils_mock.os_stub method)

 	(autotest.client.shared.iso9660.Iso9660IsoInfo method)

 	(autotest.client.shared.iso9660.Iso9660IsoRead method)

 	(autotest.client.shared.iso9660.Iso9660Mount method)

 	read_config() (autotest.client.shared.utils_koji.KojiClient method)

 	read_file() (in module autotest.client.shared.utils)

 	read_from_file() (autotest.client.shared.base_job.job_state method)

 	read_from_meminfo() (in module autotest.client.shared.utils_memory)

 	read_from_numa_maps() (in module autotest.client.shared.utils_memory)

 	read_from_smaps() (in module autotest.client.shared.utils_memory)

 	read_from_vmstat() (in module autotest.client.shared.utils_memory)

 	read_keyval() (in module autotest.client.shared.utils)

 	read_one_line() (in module autotest.client.shared.utils)

 	readline() (autotest.client.base_sysinfo.loggable method)

 	readprofile (class in autotest.client.profilers.readprofile.readprofile)

 	readval (autotest.client.net.net_utils_mock.os_stub attribute)

 	reboot() (autotest.client.job.base_client_job method)

 	(autotest.client.shared.hosts.base_classes.Host method)

 	reboot_followup() (autotest.client.shared.hosts.base_classes.Host method)

 	reboot_setup() (autotest.client.job.base_client_job method)

 	(autotest.client.shared.hosts.base_classes.Host method)

 	Recipe (class in autotest.client.bkr_xml)

 	recipe_abort() (autotest.client.bkr_proxy.BkrProxy method)

 	recipe_stop() (autotest.client.bkr_proxy.BkrProxy method)

 	recipe_upload_file() (autotest.client.bkr_proxy.BkrProxy method)

 	record() (autotest.client.shared.base_job.base_job method)

 	(autotest.client.shared.base_job.TAPReport method)

 	(autotest.client.shared.hosts.base_classes.Host method)

 	(autotest.client.shared.utils.Statistic method)

 	(in module autotest.client.shared.log)

 	record_entry() (autotest.client.shared.base_job.base_job method)

 	(autotest.client.shared.base_job.status_logger method)

 	record_keyval() (autotest.client.shared.base_job.TAPReport method)

 	recv() (autotest.client.net.net_utils.network_interface method)

 	(autotest.client.net.net_utils.raw_socket method)

 	(autotest.client.net.net_utils_mock.socket_stub method)

 	recv_from() (autotest.client.net.net_utils.raw_socket method)

 	redirect() (autotest.client.shared.logging_manager.LoggingManager method)

 	redirect_to_stream() (autotest.client.shared.logging_manager.LoggingManager method)

 	refresh_cgroups() (autotest.client.shared.utils_cgroup.Cgroup method)

 	regex_comparator (class in autotest.client.shared.test_utils.mock)

 	register_after_iteration_hook() (autotest.client.shared.test.base_test method)

 	register_before_iteration_hook() (autotest.client.shared.test.base_test method)

 	register_probe() (in module autotest.client.shared.distro), [1], [2]

 	relative_path() (autotest.client.job.base_client_job method)

 	release() (autotest.client.shared.distro.Probe method), [1]

 	release_container() (in module autotest.client.cpuset)

 	remove() (autotest.client.shared.software_manager.AptBackend method)

 	(autotest.client.shared.software_manager.YumBackend method)

 	(autotest.client.shared.software_manager.ZypperBackend method)

 	(autotest.client.test_config.config_loader method)

 	remove_args() (autotest.client.tools.boottool.Grubby method)

 	remove_checksum() (autotest.client.shared.base_packages.BasePackageManager method)

 	remove_empty_prio_classes() (in module autotest.client.cpuset)

 	remove_global_option() (autotest.client.tools.boottool.EliloConf method)

 	remove_kernel() (autotest.client.tools.boottool.Grubby method)

 	remove_pkg() (autotest.client.shared.base_packages.BasePackageManager method)

 	remove_pkg_file() (autotest.client.shared.base_packages.BasePackageManager method)

 	remove_repo() (autotest.client.shared.software_manager.AptBackend method)

 	(autotest.client.shared.software_manager.YumBackend method)

 	(autotest.client.shared.software_manager.ZypperBackend method)

 	render() (autotest.client.shared.base_job.status_log_entry method)

 	(autotest.client.shared.jsontemplate.Template method)

 	render_entry() (autotest.client.shared.base_job.status_logger method)

 	RENDERED_NONE_VALUE (autotest.client.shared.base_job.status_log_entry attribute)

 	rendezvous() (autotest.client.shared.base_barrier.barrier method)

 	rendezvous_servers() (autotest.client.shared.base_barrier.barrier method)

 	repair_filesystem_only() (autotest.client.shared.hosts.base_classes.Host method)

 	repair_full() (autotest.client.shared.hosts.base_classes.Host method)

 	repair_full_disk() (autotest.client.shared.hosts.base_classes.Host method)

 	repair_software_only() (autotest.client.shared.hosts.base_classes.Host method)

 	repair_with_protection() (autotest.client.shared.hosts.base_classes.Host method)

 	repo_check() (autotest.client.shared.base_packages.BasePackageManager method)

 	repo_run_command() (in module autotest.client.shared.base_packages)

 	RepoDiskFullError

 	RepoError

 	report() (autotest.client.profiler.profiler method)

 	(autotest.client.profilers.blktrace.blktrace.blktrace method)

 	(autotest.client.profilers.catprofile.catprofile.catprofile method)

 	(autotest.client.profilers.inotify.inotify.inotify method)

 	(autotest.client.profilers.iostat.iostat.iostat method)

 	(autotest.client.profilers.kvm_stat.kvm_stat.kvm_stat method)

 	(autotest.client.profilers.lockmeter.lockmeter.lockmeter method)

 	(autotest.client.profilers.mpstat.mpstat.mpstat method)

 	(autotest.client.profilers.oprofile.oprofile.oprofile method)

 	(autotest.client.profilers.perf.perf.perf method)

 	(autotest.client.profilers.powertop.powertop.powertop method)

 	(autotest.client.profilers.readprofile.readprofile.readprofile method)

 	(autotest.client.profilers.sar.sar.sar method)

 	(autotest.client.profilers.systemtap.systemtap.systemtap method)

 	(autotest.client.profilers.vmstat.vmstat.vmstat method)

 	(autotest.client.shared.profiler_manager.profiler_manager method)

 	
 	ReportLoggingConfig (class in autotest.client.shared.report)

 	ReportOptionParser (class in autotest.client.shared.report)

 	RepositoryFetcher (class in autotest.client.shared.base_packages)

 	RepoUnknownError

 	RepoWriteError

 	request_hardware_repair() (autotest.client.shared.hosts.base_classes.Host method)

 	require_gcc() (autotest.client.job.base_client_job method)

 	reset() (autotest.client.net.net_utils.network_utils method)

 	reset_mock() (autotest.client.shared.mock.NonCallableMock method)

 	reset_values() (autotest.client.shared.settings.Settings method)

 	resolve_task_cgroup_path() (in module autotest.client.shared.utils_cgroup)

 	restart() (autotest.client.shared.base_check_version.base_check_python_version method)

 	(autotest.client.shared.openvswitch.ServiceManagerInterface method)

 	(autotest.client.shared.openvswitch.ServiceManagerSystemD method)

 	(autotest.client.shared.openvswitch.ServiceManagerSysvinit method)

 	restore() (autotest.client.net.net_tc.classful_qdisc method)

 	(autotest.client.net.net_tc.qdisc method)

 	(autotest.client.net.net_tc.tcclass method)

 	(autotest.client.net.net_tc.tcfilter method)

 	(autotest.client.net.net_tc.u32filter method)

 	(autotest.client.net.net_utils.network_interface method)

 	(autotest.client.shared.logging_manager.LoggingManager method)

 	restore_disks() (in module autotest.client.fsdev_disks)

 	result (autotest.client.shared.test.Subtest attribute)

 	result_to_string() (autotest.client.shared.test.Subtest static method)

 	result_to_string_debug() (autotest.client.shared.test.Subtest static method)

 	result_upload_file() (autotest.client.bkr_proxy.BkrProxy method)

 	resultdir (autotest.client.shared.base_job.base_job attribute)

 	return_value (autotest.client.shared.mock.NonCallableMock attribute)

 	rm_cgroup() (autotest.client.shared.utils_cgroup.Cgroup method)

 	rounded_memtotal() (in module autotest.client.shared.utils_memory)

 	rpm_kernel (class in autotest.client.kernel)

 	rpm_kernel_suse (class in autotest.client.kernel)

 	rpm_kernel_vendor() (in module autotest.client.kernel)

 	RpmBackend (class in autotest.client.shared.software_manager)

 	RPMFileNameInfo (class in autotest.client.shared.utils_koji)

 	run() (autotest.client.base_sysinfo.command method)

 	(autotest.client.base_sysinfo.logfile method)

 	(autotest.client.cmdparser.CommandParser method)

 	(autotest.client.local_host.LocalHost method)

 	(autotest.client.shared.hosts.base_classes.Host method)

 	(autotest.client.shared.test_utils.unittest.ClassTestSuite method)

 	(autotest.client.shared.test_utils.unittest.TestCase method)

 	(autotest.client.shared.test_utils.unittest.TestSuite method)

 	(autotest.client.shared.test_utils.unittest.TextTestRunner method)

 	(autotest.client.shared.utils.FileFieldMonitor.Monitor method)

 	(autotest.client.shared.utils.InterruptedThread method)

 	(autotest.client.shared.utils.run_randomly method)

 	(in module autotest.client.setup)

 	(in module autotest.client.shared.utils)

 	run_abort() (autotest.client.harness.harness method)

 	(autotest.client.harness_beaker.harness_beaker method)

 	run_bg() (in module autotest.client.shared.utils)

 	run_complete() (autotest.client.harness.harness method)

 	(autotest.client.harness_beaker.harness_beaker method)

 	run_group() (autotest.client.job.base_client_job method)

 	run_once_profiling() (autotest.client.shared.test.base_test method)

 	run_original_function() (autotest.client.shared.test_utils.mock.mask_function method)

 	run_output() (autotest.client.shared.hosts.base_classes.Host method)

 	run_parallel() (in module autotest.client.shared.utils)

 	run_pause() (autotest.client.harness.harness method)

 	(autotest.client.harness_beaker.harness_beaker method)

 	run_randomly (class in autotest.client.shared.utils)

 	run_reboot() (autotest.client.harness.harness method)

 	(autotest.client.harness_beaker.harness_beaker method)

 	run_start() (autotest.client.harness.harness method)

 	(autotest.client.harness_autoserv.harness_autoserv method)

 	(autotest.client.harness_beaker.harness_beaker method)

 	run_test() (autotest.client.job.base_client_job method)

 	(autotest.client.partition.partition method)

 	run_test_cleanup (autotest.client.shared.base_job.base_job attribute)

 	run_test_complete() (autotest.client.harness.harness method)

 	(autotest.client.harness_autoserv.harness_autoserv method)

 	(autotest.client.harness_beaker.harness_beaker method)

 	run_test_detail() (autotest.client.job.base_client_job method)

 	run_test_on_partition() (autotest.client.partition.partition method)

 	run_test_on_partitions() (in module autotest.client.partition)

 	runjob() (in module autotest.client.job)

 	running_config() (in module autotest.client.base_utils)

 	running_os_full_version() (in module autotest.client.base_utils)

 	running_os_ident() (in module autotest.client.base_utils)

 	running_os_release() (in module autotest.client.base_utils)

 	running_stand_alone_client (autotest.client.shared.settings.Settings attribute)

 	runsubtest() (autotest.client.shared.test.Subtest method)

 	runTest() (autotest.client.shared.test_utils.unittest.FunctionTestCase method)

 	runtest() (in module autotest.client.shared.test)

 	(in module autotest.client.test)

S

 	
 	safe_kill() (in module autotest.client.shared.utils)

 	safe_rmdir() (in module autotest.client.shared.utils)

 	Sample (class in autotest.client.tools.regression)

 	sar (class in autotest.client.profilers.sar.sar)

 	save() (autotest.client.test_config.config_loader method)

 	(in module autotest.client.shared.distro_def)

 	SaveDataAfterCloseStringIO (class in autotest.client.shared.test_utils.mock)

 	select() (in module autotest.client.harness)

 	select_kernel_components() (in module autotest.client.kernelexpand)

 	selinux_enforcing() (in module autotest.client.shared.utils)

 	send() (autotest.client.net.net_utils.network_interface method)

 	(autotest.client.net.net_utils.raw_socket method)

 	(autotest.client.net.net_utils_mock.socket_stub method)

 	(autotest.client.shared.mail.EmailNotificationManager method)

 	(in module autotest.client.shared.mail)

 	send_admin() (autotest.client.shared.mail.EmailNotificationManager method)

 	send_file() (autotest.client.shared.hosts.base_classes.Host method)

 	send_queued_admin() (autotest.client.shared.mail.EmailNotificationManager method)

 	send_to() (autotest.client.net.net_utils.raw_socket method)

 	SEP (autotest.client.shared.utils_koji.KojiPkgSpec attribute)

 	(autotest.client.shared.utils_koji.KojiScratchPkgSpec attribute)

 	serialize() (autotest.client.base_sysinfo.base_sysinfo method)

 	serverdir (autotest.client.shared.base_job.base_job attribute)

 	service_cgconfig_control() (in module autotest.client.shared.utils_cgroup)

 	ServiceManager (class in autotest.client.shared.openvswitch)

 	ServiceManager() (in module autotest.client.shared.service)

 	ServiceManagerInterface (class in autotest.client.shared.openvswitch)

 	ServiceManagerSystemD (class in autotest.client.shared.openvswitch)

 	ServiceManagerSysvinit (class in autotest.client.shared.openvswitch)

 	SessionData (class in autotest.client.shared.base_syncdata)

 	set() (autotest.client.config.config method)

 	(autotest.client.shared.base_job.job_state method)

 	(autotest.client.test_config.config_loader method)

 	set_attr() (autotest.client.shared.control_data.ControlData method)

 	set_author() (autotest.client.shared.control_data.ControlData method)

 	set_autodir() (autotest.client.shared.hosts.base_classes.Host method)

 	set_backing_file() (autotest.client.shared.base_job.job_state method)

 	set_build_image() (autotest.client.kernel.kernel method)

 	set_build_target() (autotest.client.kernel.kernel method)

 	set_cgroup() (autotest.client.shared.utils_cgroup.Cgroup method)

 	set_classname() (autotest.client.tools.JUnit_api.testcaseType method)

 	set_config_files() (autotest.client.shared.settings.Settings method)

 	set_cross_cc() (autotest.client.kernel.kernel method)

 	set_default() (autotest.client.tools.boottool.Grubby method)

 	set_default_by_index() (autotest.client.tools.boottool.Grubby method)

 	set_default_koji_tag() (in module autotest.client.shared.utils_koji)

 	set_dependencies() (autotest.client.shared.control_data.ControlData method)

 	set_dest_qdisc() (autotest.client.net.net_tc.tcfilter method)

 	set_doc() (autotest.client.shared.control_data.ControlData method)

 	set_error() (autotest.client.tools.JUnit_api.testcaseType method)

 	set_errors() (autotest.client.tools.JUnit_api.testsuite method)

 	set_experimental() (autotest.client.shared.control_data.ControlData method)

 	set_extensiontype_() (autotest.client.tools.JUnit_api.testsuite method)

 	set_fail_fast() (autotest.client.shared.test_utils.mock.mock_god method)

 	set_failure() (autotest.client.tools.JUnit_api.testcaseType method)

 	set_failures() (autotest.client.tools.JUnit_api.testsuite method)

 	set_finish() (autotest.client.shared.base_syncdata.SessionData method)

 	set_fs_options() (autotest.client.partition.partition method)

 	set_handle() (autotest.client.net.net_tc.tcfilter method)

 	set_hostname() (autotest.client.tools.JUnit_api.testsuite method)

 	set_hwaddr() (autotest.client.net.net_utils.network_interface method)

 	set_id() (autotest.client.tools.JUnit_api.testsuiteType method)

 	set_io_controls() (in module autotest.client.cpuset)

 	set_io_scheduler() (autotest.client.partition.partition method)

 	set_ip_local_port_range() (in module autotest.client.shared.utils)

 	set_ipaddr() (autotest.client.net.net_utils.network_interface method)

 	set_leaf_qdisc() (autotest.client.net.net_tc.tcclass method)

 	set_log_file_dir() (in module autotest.client.shared.utils)

 	set_message() (autotest.client.tools.JUnit_api.errorType method)

 	(autotest.client.tools.JUnit_api.failureType method)

 	set_module() (autotest.client.shared.mail.EmailNotificationManager method)

 	set_name() (autotest.client.shared.control_data.ControlData method)

 	(autotest.client.tools.JUnit_api.propertyType method)

 	(autotest.client.tools.JUnit_api.testcaseType method)

 	(autotest.client.tools.JUnit_api.testsuite method)

 	set_num_huge_pages() (in module autotest.client.shared.utils_memory)

 	set_only() (autotest.client.shared.profiler_manager.profiler_manager method)

 	set_package() (autotest.client.tools.JUnit_api.testsuiteType method)

 	set_parent_class() (autotest.client.net.net_tc.qdisc method)

 	(autotest.client.net.net_tc.tcclass method)

 	set_parent_qdisc() (autotest.client.net.net_tc.tcfilter method)

 	set_power_state() (in module autotest.client.base_utils)

 	set_priority() (autotest.client.net.net_tc.tcfilter method)

 	set_priority_class() (autotest.client.shared.utils.VersionableClass class method)

 	set_properties() (autotest.client.tools.JUnit_api.testsuite method)

 	set_property() (autotest.client.shared.utils_cgroup.Cgroup method)

 	(autotest.client.tools.JUnit_api.propertiesType method)

 	set_property_h() (autotest.client.shared.utils_cgroup.Cgroup method)

 	set_protocol() (autotest.client.net.net_tc.tcfilter method)

 	set_root_cgroup() (autotest.client.shared.utils_cgroup.Cgroup method)

 	set_run_verify() (autotest.client.shared.control_data.ControlData method)

 	set_sched_tunables() (autotest.client.fsdev_disks.fsdev_disks method)

 	set_socket_timeout() (autotest.client.net.net_utils.raw_socket method)

 	set_state() (autotest.client.shared.base_job.base_job method)

 	set_sync_count() (autotest.client.shared.control_data.ControlData method)

 	set_system_err() (autotest.client.tools.JUnit_api.testsuite method)

 	set_system_out() (autotest.client.tools.JUnit_api.testsuite method)

 	set_test_category() (autotest.client.shared.control_data.ControlData method)

 	set_test_class() (autotest.client.shared.control_data.ControlData method)

 	set_test_parameters() (autotest.client.shared.control_data.ControlData method)

 	set_test_type() (autotest.client.shared.control_data.ControlData method)

 	set_testcase() (autotest.client.tools.JUnit_api.testsuite method)

 	set_tests() (autotest.client.tools.JUnit_api.testsuite method)

 	set_testsuite() (autotest.client.tools.JUnit_api.testsuites method)

 	set_time() (autotest.client.shared.control_data.ControlData method)

 	(autotest.client.tools.JUnit_api.testcaseType method)

 	(autotest.client.tools.JUnit_api.testsuite method)

 	set_timestamp() (autotest.client.tools.JUnit_api.testsuite method)

 	set_tunable() (autotest.client.fsdev_disks.fsdev_disks method)

 	set_type() (autotest.client.tools.JUnit_api.errorType method)

 	(autotest.client.tools.JUnit_api.failureType method)

 	set_value() (autotest.client.tools.JUnit_api.propertyType method)

 	set_valueOf_() (autotest.client.tools.JUnit_api.errorType method)

 	(autotest.client.tools.JUnit_api.failureType method)

 	set_vlanmode() (autotest.client.shared.openvswitch.OpenVSwitchControl method)

 	(autotest.client.shared.openvswitch.OpenVSwitchControlCli_140 method)

 	set_wake_alarm() (in module autotest.client.base_utils)

 	setdefault() (autotest.client.shared.backports.collections.OrderedDict.OrderedDict method)

 	settimeout() (autotest.client.net.net_utils_mock.socket_stub method)

 	Settings (class in autotest.client.shared.settings)

 	SettingsError

 	SettingsValueError

 	setup() (autotest.client.harness.harness method)

 	(autotest.client.net.net_tc.classful_qdisc method)

 	(autotest.client.net.net_tc.netem method)

 	(autotest.client.net.net_tc.pfifo method)

 	(autotest.client.net.net_tc.prio method)

 	(autotest.client.net.net_tc.qdisc method)

 	(autotest.client.net.net_tc.tcclass method)

 	(autotest.client.net.net_tc.tcfilter method)

 	(autotest.client.net.net_tc.u32filter method)

 	(autotest.client.profiler.profiler method)

 	(autotest.client.profilers.blktrace.blktrace.blktrace method)

 	(autotest.client.profilers.ftrace.ftrace.ftrace method)

 	(autotest.client.profilers.lockmeter.lockmeter.lockmeter method)

 	(autotest.client.profilers.lttng.lttng.lttng method)

 	(autotest.client.profilers.oprofile.oprofile.oprofile method)

 	(autotest.client.profilers.powertop.powertop.powertop method)

 	(autotest.client.profilers.readprofile.readprofile.readprofile method)

 	(autotest.client.shared.hosts.base_classes.Host method)

 	(autotest.client.shared.test.base_test method)

 	setUp() (autotest.client.shared.test_utils.unittest.FunctionTestCase method)

 	(autotest.client.shared.test_utils.unittest.TestCase method)

 	setup() (in module autotest.client.setup_modules)

 	setup_before_test() (autotest.client.partition.partition method)

 	setup_dep() (autotest.client.job.base_client_job method)

 	setup_dirs() (autotest.client.job.base_client_job method)

 	setup_done (autotest.client.profilers.oprofile.oprofile.oprofile attribute)

 	setup_job (class in autotest.client.setup_job)

 	setup_source() (autotest.client.kernel.srpm_kernel method)

 	(autotest.client.kernel.srpm_kernel_suse method)

 	setup_test() (in module autotest.client.setup_job)

 	setup_tests() (in module autotest.client.setup_job)

 	setupInitSymlink() (autotest.client.harness_beaker.harness_beaker method)

 	sh_escape() (in module autotest.client.shared.utils)

 	shadow_file (autotest.client.shared.settings.Settings attribute)

 	shortDescription() (autotest.client.shared.test_utils.unittest.ClassTestSuite method)

 	(autotest.client.shared.test_utils.unittest.FunctionTestCase method)

 	(autotest.client.shared.test_utils.unittest.TestCase method)

 	side_effect (autotest.client.shared.mock.NonCallableMock attribute)

 	signal_pid() (in module autotest.client.shared.utils)

 	signal_program() (in module autotest.client.shared.utils)

 	single_sync() (autotest.client.shared.base_syncdata.SyncData method)

 	site_check_python_version (class in autotest.client.shared.check_version)

 	site_job (in module autotest.client.job)

 	
 	site_testdir (autotest.client.shared.base_job.base_job attribute)

 	SiteFsdevManager (in module autotest.client.fsdev_mgr)

 	skip() (in module autotest.client.shared.test_utils.unittest)

 	skipIf() (in module autotest.client.shared.test_utils.unittest)

 	SkipTest

 	skipTest() (autotest.client.shared.test_utils.unittest.TestCase method)

 	skipUnless() (in module autotest.client.shared.test_utils.unittest)

 	smoke_test() (autotest.client.shared.utils_cgroup.Cgroup method)

 	socket() (autotest.client.net.net_utils.raw_socket method)

 	(autotest.client.net.net_utils_mock.socket_stub method)

 	socket_stub (class in autotest.client.net.net_utils_mock)

 	SOCKET_TIMEOUT (autotest.client.net.net_utils.raw_socket attribute)

 	socket_timeout() (autotest.client.net.net_utils.raw_socket method)

 	SOFTWARE_COMPONENT_QRY (autotest.client.shared.software_manager.RpmBackend attribute)

 	software_packages (autotest.client.shared.distro_def.DistroDef attribute)

 	software_packages_type (autotest.client.shared.distro_def.DistroDef attribute)

 	SoftwareManager (class in autotest.client.shared.software_manager)

 	SoftwareManagerLoggingConfig (class in autotest.client.shared.software_manager)

 	SoftwarePackage (class in autotest.client.shared.distro_def)

 	SortingLoggingFile (class in autotest.client.shared.logging_manager)

 	sortTestMethodsUsing() (autotest.client.shared.test_utils.unittest.TestLoader method)

 	SpecificServiceManager() (in module autotest.client.shared.service)

 	srpm_kernel (class in autotest.client.kernel)

 	srpm_kernel_suse (class in autotest.client.kernel)

 	srpm_kernel_vendor() (in module autotest.client.kernel)

 	standby() (in module autotest.client.base_utils)

 	start() (autotest.client.job.disk_usage_monitor method)

 	(autotest.client.net.net_utils.network_utils method)

 	(autotest.client.profiler.profiler method)

 	(autotest.client.profilers.blktrace.blktrace.blktrace method)

 	(autotest.client.profilers.catprofile.catprofile.catprofile method)

 	(autotest.client.profilers.cmdprofile.cmdprofile.cmdprofile method)

 	(autotest.client.profilers.cpistat.cpistat.cpistat method)

 	(autotest.client.profilers.ftrace.ftrace.ftrace method)

 	(autotest.client.profilers.inotify.inotify.inotify method)

 	(autotest.client.profilers.iostat.iostat.iostat method)

 	(autotest.client.profilers.kvm_stat.kvm_stat.kvm_stat method)

 	(autotest.client.profilers.lockmeter.lockmeter.lockmeter method)

 	(autotest.client.profilers.lttng.lttng.lttng method)

 	(autotest.client.profilers.mpstat.mpstat.mpstat method)

 	(autotest.client.profilers.oprofile.oprofile.oprofile method)

 	(autotest.client.profilers.perf.perf.perf method)

 	(autotest.client.profilers.powertop.powertop.powertop method)

 	(autotest.client.profilers.readprofile.readprofile.readprofile method)

 	(autotest.client.profilers.sar.sar.sar method)

 	(autotest.client.profilers.systemtap.systemtap.systemtap method)

 	(autotest.client.profilers.vmstat.vmstat.vmstat method)

 	(autotest.client.shared.openvswitch.ServiceManagerInterface method)

 	(autotest.client.shared.openvswitch.ServiceManagerSystemD method)

 	(autotest.client.shared.openvswitch.ServiceManagerSysvinit method)

 	(autotest.client.shared.profiler_manager.profiler_manager method)

 	(autotest.client.shared.utils.FileFieldMonitor method)

 	(autotest.client.shared.utils.SystemLoad method)

 	start_loggers() (autotest.client.shared.hosts.base_classes.Host method)

 	start_logging() (autotest.client.shared.logging_manager.FdRedirectionLoggingManager method)

 	(autotest.client.shared.logging_manager.LoggingManager method)

 	start_ovs_vswitchd() (autotest.client.shared.openvswitch.OpenVSwitch method)

 	start_reboot() (autotest.client.job.base_client_job method)

 	start_watchdog() (autotest.client.harness_beaker.harness_beaker method)

 	startTest() (autotest.client.shared.test_utils.unittest.TestResult method)

 	Statistic (class in autotest.client.shared.utils)

 	status() (autotest.client.shared.openvswitch.OpenVSwitchControl method)

 	(autotest.client.shared.openvswitch.OpenVSwitchControlCli_140 method)

 	(autotest.client.shared.openvswitch.ServiceManagerInterface method)

 	(autotest.client.shared.openvswitch.ServiceManagerSystemD method)

 	status_indenter (class in autotest.client.job)

 	(class in autotest.client.shared.base_job)

 	status_log_entry (class in autotest.client.shared.base_job)

 	status_logger (class in autotest.client.shared.base_job)

 	stderr_level (autotest.client.shared.logging_config.LoggingConfig attribute)

 	stdout_level (autotest.client.shared.logging_config.LoggingConfig attribute)

 	step_engine() (autotest.client.job.base_client_job method)

 	StepError

 	stop() (autotest.client.job.disk_usage_monitor method)

 	(autotest.client.net.net_utils.network_utils method)

 	(autotest.client.profiler.profiler method)

 	(autotest.client.profilers.blktrace.blktrace.blktrace method)

 	(autotest.client.profilers.catprofile.catprofile.catprofile method)

 	(autotest.client.profilers.cmdprofile.cmdprofile.cmdprofile method)

 	(autotest.client.profilers.cpistat.cpistat.cpistat method)

 	(autotest.client.profilers.ftrace.ftrace.ftrace method)

 	(autotest.client.profilers.inotify.inotify.inotify method)

 	(autotest.client.profilers.iostat.iostat.iostat method)

 	(autotest.client.profilers.kvm_stat.kvm_stat.kvm_stat method)

 	(autotest.client.profilers.lockmeter.lockmeter.lockmeter method)

 	(autotest.client.profilers.lttng.lttng.lttng method)

 	(autotest.client.profilers.mpstat.mpstat.mpstat method)

 	(autotest.client.profilers.oprofile.oprofile.oprofile method)

 	(autotest.client.profilers.perf.perf.perf method)

 	(autotest.client.profilers.powertop.powertop.powertop method)

 	(autotest.client.profilers.readprofile.readprofile.readprofile method)

 	(autotest.client.profilers.sar.sar.sar method)

 	(autotest.client.profilers.systemtap.systemtap.systemtap method)

 	(autotest.client.profilers.vmstat.vmstat.vmstat method)

 	(autotest.client.shared.openvswitch.ServiceManagerInterface method)

 	(autotest.client.shared.openvswitch.ServiceManagerSystemD method)

 	(autotest.client.shared.openvswitch.ServiceManagerSysvinit method)

 	(autotest.client.shared.profiler_manager.profiler_manager method)

 	(autotest.client.shared.test_utils.unittest.TestResult method)

 	(autotest.client.shared.utils.FileFieldMonitor method)

 	(autotest.client.shared.utils.SystemLoad method)

 	stop_loggers() (autotest.client.shared.hosts.base_classes.Host method)

 	stop_logging() (autotest.client.shared.logging_manager.LoggingManager method)

 	stopTest() (autotest.client.shared.test_utils.unittest.TestResult method)

 	STREAM_MANAGER_CLASS (autotest.client.shared.logging_manager.FdRedirectionLoggingManager attribute)

 	(autotest.client.shared.logging_manager.LoggingManager attribute)

 	string_to_bitlist() (in module autotest.client.shared.utils)

 	strip_console_codes() (in module autotest.client.shared.utils)

 	strip_unicode() (in module autotest.client.shared.utils)

 	stub_class() (autotest.client.shared.test_utils.mock.mock_god method)

 	stub_class_method() (autotest.client.shared.test_utils.mock.mock_god method)

 	stub_function() (autotest.client.shared.test_utils.mock.mock_god method)

 	stub_function_to_return() (autotest.client.shared.test_utils.mock.mock_god method)

 	stub_with() (autotest.client.shared.test_utils.mock.mock_god method)

 	StubNotFoundError

 	subclass (autotest.client.tools.JUnit_api.errorType attribute)

 	(autotest.client.tools.JUnit_api.failureType attribute)

 	(autotest.client.tools.JUnit_api.propertiesType attribute)

 	(autotest.client.tools.JUnit_api.propertyType attribute)

 	(autotest.client.tools.JUnit_api.system_err attribute)

 	(autotest.client.tools.JUnit_api.system_out attribute)

 	(autotest.client.tools.JUnit_api.testcaseType attribute)

 	(autotest.client.tools.JUnit_api.testsuite attribute)

 	(autotest.client.tools.JUnit_api.testsuiteType attribute)

 	(autotest.client.tools.JUnit_api.testsuites attribute)

 	Subtest (class in autotest.client.shared.test)

 	subtest_fatal() (in module autotest.client.shared.test)

 	subtest_nocleanup() (in module autotest.client.shared.test)

 	suiteClass (autotest.client.shared.test_utils.unittest.TestLoader attribute)

 	superclass (autotest.client.tools.JUnit_api.errorType attribute)

 	(autotest.client.tools.JUnit_api.failureType attribute)

 	(autotest.client.tools.JUnit_api.propertiesType attribute)

 	(autotest.client.tools.JUnit_api.propertyType attribute)

 	(autotest.client.tools.JUnit_api.system_err attribute)

 	(autotest.client.tools.JUnit_api.system_out attribute)

 	(autotest.client.tools.JUnit_api.testcaseType attribute)

 	(autotest.client.tools.JUnit_api.testsuite attribute)

 	(autotest.client.tools.JUnit_api.testsuiteType attribute)

 	(autotest.client.tools.JUnit_api.testsuites attribute)

 	SUPPORTED_BOOTLOADERS (autotest.client.tools.boottool.Grubby attribute)

 	supports_reboot (autotest.client.profiler.profiler attribute)

 	(autotest.client.profilers.cmdprofile.cmdprofile.cmdprofile attribute)

 	suspend_to_disk() (in module autotest.client.base_utils)

 	suspend_to_ram() (in module autotest.client.base_utils)

 	symlink_closure() (autotest.client.local_host.LocalHost method)

 	(autotest.client.shared.hosts.base_classes.Host method)

 	sync() (autotest.client.shared.base_syncdata.SyncData method)

 	SyncData (class in autotest.client.shared.base_syncdata)

 	SyncListenServer (class in autotest.client.shared.base_syncdata)

 	sys_v_init_command_generator() (in module autotest.client.shared.service)

 	sys_v_init_result_parser() (in module autotest.client.shared.service)

 	sysctl() (in module autotest.client.base_utils)

 	sysctl_kernel() (in module autotest.client.base_utils)

 	sysrq_reboot() (autotest.client.shared.hosts.base_classes.Host method)

 	system() (in module autotest.client.shared.utils)

 	system_err (class in autotest.client.tools.JUnit_api)

 	system_out (class in autotest.client.tools.JUnit_api)

 	system_output() (in module autotest.client.shared.utils)

 	system_output_parallel() (in module autotest.client.shared.utils)

 	system_parallel() (in module autotest.client.shared.utils)

 	systemd_command_generator() (in module autotest.client.shared.service)

 	systemd_result_parser() (in module autotest.client.shared.service)

 	SystemInspector (class in autotest.client.shared.software_manager)

 	SystemLoad (class in autotest.client.shared.utils)

 	systemtap (class in autotest.client.profilers.systemtap.systemtap)

T

 	
 	tag (autotest.client.shared.base_job.base_job attribute)

 	tap_ok() (autotest.client.shared.base_job.TAPReport class method)

 	TAPReport (class in autotest.client.shared.base_job)

 	tar_package() (autotest.client.shared.base_packages.BasePackageManager method)

 	Task (class in autotest.client.bkr_xml)

 	task_abort() (autotest.client.bkr_proxy.BkrProxy method)

 	task_result() (autotest.client.bkr_proxy.BkrProxy method)

 	task_start() (autotest.client.bkr_proxy.BkrProxy method)

 	task_stop() (autotest.client.bkr_proxy.BkrProxy method)

 	task_upload_file() (autotest.client.bkr_proxy.BkrProxy method)

 	tasks_path() (in module autotest.client.cpuset)

 	tc_cmd() (autotest.client.net.net_tc.qdisc method)

 	(autotest.client.net.net_tc.tcfilter method)

 	tcclass (class in autotest.client.net.net_tc)

 	tcfilter (class in autotest.client.net.net_tc)

 	tear_down() (autotest.client.harness_beaker.harness_beaker method)

 	tearDown() (autotest.client.shared.test_utils.unittest.FunctionTestCase method)

 	(autotest.client.shared.test_utils.unittest.TestCase method)

 	tee() (in module autotest.client.tools.regression)

 	tee_output_logdir_mark() (in module autotest.client.kernel)

 	tee_redirect() (autotest.client.shared.logging_manager.LoggingManager method)

 	tee_redirect_debug_dir() (autotest.client.shared.logging_manager.LoggingManager method)

 	tee_redirect_to_stream() (autotest.client.shared.logging_manager.LoggingManager method)

 	tempdir (class in autotest.client.shared.autotemp)

 	TempDir (class in autotest.client.shared.base_syncdata)

 	tempfile (class in autotest.client.shared.autotemp)

 	Template (class in autotest.client.shared.jsontemplate)

 	TemplateSyntaxError

 	test (class in autotest.client.test)

 	test() (autotest.client.shared.magic.MagicTest method)

 	(autotest.client.shared.test.Subtest method)

 	(autotest.client.shared.utils_cgroup.Cgroup method)

 	test_status() (autotest.client.harness.harness method)

 	(autotest.client.harness_autoserv.harness_autoserv method)

 	(autotest.client.harness_beaker.harness_beaker method)

 	(autotest.client.harness_simple.harness_simple method)

 	
 	test_status_detail() (autotest.client.harness.harness method)

 	(autotest.client.harness_beaker.harness_beaker method)

 	TestBaseException

 	TestCase (class in autotest.client.shared.test_utils.unittest)

 	testcaseType (class in autotest.client.tools.JUnit_api)

 	testdir (autotest.client.shared.base_job.base_job attribute)

 	TestError

 	TestFail

 	TestingConfig (class in autotest.client.shared.logging_config)

 	TestLoader (class in autotest.client.shared.test_utils.unittest)

 	testMethodPrefix (autotest.client.shared.test_utils.unittest.TestLoader attribute)

 	TestNAError

 	TestResult (class in autotest.client.shared.test_utils.unittest)

 	TestSuite (class in autotest.client.shared.test_utils.unittest)

 	testsuite (class in autotest.client.tools.JUnit_api)

 	testsuites (class in autotest.client.tools.JUnit_api)

 	testsuiteType (class in autotest.client.tools.JUnit_api)

 	TestWarn

 	text_clean() (in module autotest.client.tools.results2junit)

 	TextTestRunner (class in autotest.client.shared.test_utils.unittest)

 	thin_lv_create() (in module autotest.client.lv_utils)

 	timeout() (autotest.client.shared.base_syncdata.SessionData method)

 	(autotest.client.shared.base_syncdata.SyncData method)

 	TIMESTAMP_FIELD (autotest.client.shared.base_job.status_log_entry attribute)

 	tmpdir (autotest.client.shared.base_job.base_job attribute)

 	to_seconds() (in module autotest.client.base_utils)

 	to_text() (autotest.client.shared.utils_koji.KojiPkgSpec method)

 	tokenstream() (autotest.client.shared.jsontemplate.Template method)

 	toolsdir (autotest.client.shared.base_job.base_job attribute)

 	tracing_dir (autotest.client.profilers.ftrace.ftrace.ftrace attribute)

 	trim_custom_directories() (in module autotest.client.shared.base_packages)

U

 	
 	u32filter (class in autotest.client.net.net_tc)

 	umount() (in module autotest.client.shared.utils)

 	UndefinedVariable

 	undo_redirect() (autotest.client.shared.logging_manager.FdRedirectionLoggingManager method)

 	(autotest.client.shared.logging_manager.LoggingManager method)

 	UnhandledJobError

 	UnhandledTestError

 	UnhandledTestFail

 	unique() (in module autotest.client.shared.utils)

 	unique_not_false_list() (in module autotest.client.os_dep)

 	UNKNOWN_DISTRO (in module autotest.client.shared.distro)

 	unload_kvm() (in module autotest.client.kvm_control)

 	unload_module() (in module autotest.client.base_utils)

 	unlock_file() (in module autotest.client.shared.utils)

 	unmap_url() (in module autotest.client.shared.utils)

 	unmap_url_cache() (in module autotest.client.base_utils)

 	unmock_io() (autotest.client.shared.test_utils.mock.mock_god method)

 	unmount() (autotest.client.partition.partition method)

 	unmount_force() (autotest.client.partition.partition method)

 	unmount_partition() (in module autotest.client.partition)

 	unpack() (autotest.client.net.net_utils.ethernet static method)

 	unpath() (in module autotest.client.cpuset)

 	unstub() (autotest.client.shared.test_utils.mock.mock_god method)

 	unstub_all() (autotest.client.shared.test_utils.mock.mock_god method)

 	untar_pkg() (autotest.client.shared.base_packages.BasePackageManager method)

 	untar_required() (autotest.client.shared.base_packages.BasePackageManager method)

 	up() (autotest.client.net.net_utils.network_interface method)

 	update() (autotest.client.shared.backports.collections.OrderedDict.OrderedDict method)

 	(autotest.client.shared.progressbar.ProgressBar method)

 	(autotest.client.tools.boottool.EliloConf method)

 	
 	update_checksum() (autotest.client.shared.base_packages.BasePackageManager method)

 	update_config() (autotest.client.kernel_config.kernel_config method)

 	update_screen() (autotest.client.shared.progressbar.ProgressBar method)

 	update_spec() (autotest.client.kernel.srpm_kernel method)

 	update_spec_line() (autotest.client.kernel.srpm_kernel method)

 	(autotest.client.kernel.srpm_kernel_suse method)

 	update_version() (in module autotest.client.shared.utils)

 	update_watchdog() (autotest.client.bkr_proxy.BkrProxy method)

 	upgrade() (autotest.client.shared.software_manager.AptBackend method)

 	(autotest.client.shared.software_manager.YumBackend method)

 	(autotest.client.shared.software_manager.ZypperBackend method)

 	upkeep() (autotest.client.shared.base_packages.BasePackageManager method)

 	upload_pkg() (autotest.client.shared.base_packages.BasePackageManager method)

 	upload_pkg_dir() (autotest.client.shared.base_packages.BasePackageManager method)

 	upload_pkg_file() (autotest.client.shared.base_packages.BasePackageManager method)

 	upload_pkg_parallel() (autotest.client.shared.base_packages.BasePackageManager method)

 	upload_recipe_files() (autotest.client.harness_beaker.harness_beaker method)

 	upload_result_files() (autotest.client.harness_beaker.harness_beaker method)

 	upload_task_files() (autotest.client.harness_beaker.harness_beaker method)

 	url (autotest.client.shared.base_packages.RepositoryFetcher attribute)

 	url_accessible() (in module autotest.client.kernelexpand)

 	urlopen() (in module autotest.client.shared.utils)

 	urlretrieve() (in module autotest.client.shared.utils)

 	usage() (autotest.client.autotest_local.AutotestLocalApp method)

 	(in module autotest.client.tools.process_metrics)

 	use_fsdev_lib() (in module autotest.client.fsdev_disks)

 	use_partition() (autotest.client.fsdev_mgr.BaseFsdevManager method)

 	use_sequence_number (autotest.client.shared.base_job.base_job attribute)

V

 	
 	validate_ISO8601_DATETIME_PATTERN() (autotest.client.tools.JUnit_api.testsuite method)

 	values() (autotest.client.shared.backports.collections.OrderedDict.OrderedDict method)

 	verify() (autotest.client.shared.hosts.base_classes.Host method)

 	verify_connectivity() (autotest.client.shared.hosts.base_classes.Host method)

 	verify_hardware() (autotest.client.shared.hosts.base_classes.Host method)

 	verify_running_as_root() (in module autotest.client.shared.utils)

 	verify_software() (autotest.client.shared.hosts.base_classes.Host method)

 	version (autotest.client.profilers.blktrace.blktrace.blktrace attribute)

 	(autotest.client.profilers.catprofile.catprofile.catprofile attribute)

 	(autotest.client.profilers.cmdprofile.cmdprofile.cmdprofile attribute)

 	(autotest.client.profilers.cpistat.cpistat.cpistat attribute)

 	(autotest.client.profilers.ftrace.ftrace.ftrace attribute)

 	(autotest.client.profilers.inotify.inotify.inotify attribute)

 	(autotest.client.profilers.iostat.iostat.iostat attribute)

 	(autotest.client.profilers.kvm_stat.kvm_stat.kvm_stat attribute)

 	(autotest.client.profilers.lockmeter.lockmeter.lockmeter attribute)

 	(autotest.client.profilers.lttng.lttng.lttng attribute)

 	(autotest.client.profilers.mpstat.mpstat.mpstat attribute)

 	(autotest.client.profilers.oprofile.oprofile.oprofile attribute)

 	(autotest.client.profilers.perf.perf.perf attribute)

 	(autotest.client.profilers.powertop.powertop.powertop attribute)

 	(autotest.client.profilers.readprofile.readprofile.readprofile attribute)

 	(autotest.client.profilers.sar.sar.sar attribute)

 	(autotest.client.profilers.systemtap.systemtap.systemtap attribute)

 	(autotest.client.profilers.vmstat.vmstat.vmstat attribute)

 	
 	version() (autotest.client.shared.distro.Probe method), [1]

 	version_choose_config() (in module autotest.client.kernel_versions)

 	(in module autotest.client.shared.kernel_versions)

 	version_encode() (in module autotest.client.kernel_versions)

 	(in module autotest.client.shared.kernel_versions)

 	version_len() (in module autotest.client.kernel_versions)

 	(in module autotest.client.shared.kernel_versions)

 	version_limit() (in module autotest.client.kernel_versions)

 	(in module autotest.client.shared.kernel_versions)

 	VersionableClass (class in autotest.client.shared.utils)

 	vg_check() (in module autotest.client.lv_utils)

 	vg_list() (in module autotest.client.lv_utils)

 	vg_ramdisk_cleanup() (in module autotest.client.lv_utils)

 	viewitems() (autotest.client.shared.backports.collections.OrderedDict.OrderedDict method)

 	viewkeys() (autotest.client.shared.backports.collections.OrderedDict.OrderedDict method)

 	viewvalues() (autotest.client.shared.backports.collections.OrderedDict.OrderedDict method)

 	virtual_partition (class in autotest.client.partition)

 	vmstat (class in autotest.client.profilers.vmstat.vmstat)

W

 	
 	wait_down() (autotest.client.shared.hosts.base_classes.Host method)

 	WAIT_DOWN_REBOOT_TIMEOUT (autotest.client.shared.hosts.base_classes.Host attribute)

 	WAIT_DOWN_REBOOT_WARNING (autotest.client.shared.hosts.base_classes.Host attribute)

 	wait_for() (autotest.client.shared.utils.AsyncJob method)

 	(in module autotest.client.shared.utils)

 	wait_for_carrier() (autotest.client.net.net_utils.network_interface method)

 	(autotest.client.net.net_utils_mock.netif_stub method)

 	(autotest.client.net.net_utils_mock.network_interface_mock method)

 	wait_for_restart() (autotest.client.shared.hosts.base_classes.Host method)

 	wait_for_state_change() (autotest.client.net.net_utils.bonding method)

 	wait_up() (autotest.client.local_host.LocalHost method)

 	(autotest.client.shared.hosts.base_classes.Host method)

 	warmup() (autotest.client.shared.test.base_test method)

 	wasSuccessful() (autotest.client.shared.test_utils.unittest.TestResult method)

 	watch() (autotest.client.job.disk_usage_monitor class method)

 	watchdog_loop() (autotest.client.harness_beaker.harness_beaker method)

 	wget_cmd_pattern (autotest.client.shared.base_packages.HttpFetcher attribute)

 	where_art_thy_filehandles() (in module autotest.client.base_utils)

 	which() (in module autotest.client.os_dep)

 	which_header() (in module autotest.client.os_dep)

 	
 	which_library() (in module autotest.client.os_dep)

 	wipe() (autotest.client.partition.partition method)

 	wipe_disks() (in module autotest.client.fsdev_disks)

 	wipe_filesystem() (in module autotest.client.partition)

 	with_backing_file() (in module autotest.client.shared.base_job)

 	with_backing_lock() (in module autotest.client.shared.base_job)

 	write() (autotest.client.shared.base_job.TAPReport method)

 	(autotest.client.shared.logging_manager.LoggingFile method)

 	write_attr_keyval() (autotest.client.shared.test.base_test method)

 	write_cores() (in module autotest.client.tools.crash_handler)

 	write_html_report() (in module autotest.client.shared.report)

 	write_iteration_keyval() (autotest.client.shared.test.base_test method)

 	write_keyval() (in module autotest.client.shared.utils)

 	write_one_line() (in module autotest.client.shared.utils)

 	write_perf_keyval() (autotest.client.shared.test.base_test method)

 	write_pid() (in module autotest.client.shared.utils)

 	write_processed_tests() (autotest.client.harness_beaker.harness_beaker method)

 	write_test_keyval() (autotest.client.shared.test.base_test method)

 	write_to_file() (autotest.client.shared.base_job.job_state method)

 	(in module autotest.client.tools.crash_handler)

 	writelines() (autotest.client.shared.logging_manager.LoggingFile method)

X

 	
 	xen (class in autotest.client.xen)

 	xen() (autotest.client.job.base_client_job method)

 	xfs_mkfs_options() (in module autotest.client.fsinfo)

 	
 	xfs_tunables() (in module autotest.client.fsinfo)

 	xml_attr() (in module autotest.client.bkr_xml)

 	xml_get_nodes() (in module autotest.client.bkr_xml)

Y

 	
 	YumBackend (class in autotest.client.shared.software_manager)

Z

 	
 	ZypperBackend (class in autotest.client.shared.software_manager)

 _images/joblist.png
AGTOTect Frontend =Mozila

File Edit View History Bookmarks Tools Help

-2 - @ 4% [httpilocalhost:8000afefserver/clientjautotest AfeclientyafeClier || b

E g i A + + + Frontend | Admin | Resulis (Old TKO) | Documentation | Feeds: Completed, Failed

JEEER] view o Crentedon ot Uit View s _sofsh

Queued Jobs ~ Running Jobs Finished Jobs | All Jobs

View jobs foruser: [alincoln — ~[
Select: all, visible, none - Actions
<<First < Previous 1-50f 5 Next > Last >>
Select ID Owner Name Priority Client/Server Created Status
r 5 alincoln another server job Medium Server 2008-01-10 17:17 3 Queued
r 4 alincoln very important job Urgent ~ Client 2008-01-10 17:17 7 Queued
r 3 alincoln server job Low Server 2008-01-10 17:16 3 Queued
r 2 alincoln my job Medium Client 2008-01-10 17:15 5 Queued
2 Failed
" 1 alincoln runsometests Medium Client 2008-01-10 15:51 2 Completed
1 Aborted
<<First < Previous 1-50f 5 Next > Last >>
Done

_images/parser_algorithm.png
Q
current_kernel = UNKNOWN

v

INSERT new job record

v

push(GoOD)

es.next()

typeof(line)
TATUS

typeof(line)
TART

typeof(line)
ND STATUS

lines.put_back(line)

Begin a new stack level

Update the current status

Update the current status
Reduce the stack level

lines. put_back(END ABORT)

indent = count(tabs)

indent
< size(stack)

fident = count(tabs)+1

Update the current status

Implicitly ABORT

current_status = STATUS

update(STATUS) typeof(line)

Py END STATUS

Reduce the stack level

typeof(line)
STATUS

size(stack) > 1

NO

v
INSERT new test record

‘current _status = pop()
update(current _status)
if testname == reboot && current_status > FAIL:

current_kernel = kernel

_images/createjob.png
File Edit View History Bookmarks Tools Help

@->-& 4% [httpilocalhost:8000afefserver/clientjautotest Afeclientyafeclient | + o0gle
Job List View Job -Bonun View Host _Refresh

Job name:

Priorit Medium ~|

Kernel:

Timeout (hours): [72

Email List:
Skip verify: r
Tests: Test type Client +]
bonnie (Kerel / Functional)
[~ aostress 8 §
ritten by: Martin Bligh <mbligh@google.com>
I~ bonnie 'ype: Client Asynchronous
o fsx ‘ime: SHORT (less than 15 minutes)
J7 kembench |l e i a benchmark which measures the performance of Unix file
[~ memiest86 | system operations. Bonnie is concerned with identifying
[netperia | Potlenccks: the name i a tribute to Bonnie Raitt, who knows how
(0 use one.
[sleeptest
For more info, see hitp://www.textuality.com/bonnie/
his benchmark configuration run generates sustained write
traffic of 35-S0MB/s of .IMB writes to just one disk. It appears
(0 have a sequential and a random workload. It gives profile
‘measurements for: throughput, %CPU rand seeks per second. Not
sure if the the CPU numbers are trustworthy.
Profilers:

View control file Edit control file

Onetimehostsy| _Add Selected hosts: (Click on a host to remove if)
« < Next Last
Run on any |i386 (platform) ¥| First Previous 0-0 0of 0 N -

=l Eeemea]
Available hosts: (Click on a host to add it)

Hosmane P P 000 LY
Platform Al platforms ~]

Label [AllTabels

Status [Allvalues =]

Locked o -]

ACL accessible only [+ ACL accessible only

P pions eI

berlin X86_64 Ready No
fortwayne i386 Ready No
london 386 Ready No
odessa ppe64 Ready No
sanfrancisco x86_64 Ready No
washington ~ x86_64 Ready No
waterloo 386 Ready No
o pions e I

Select visible | Select all | _Select none

Done

_images/scheduler_flow.png
Job in queue

Scheduler
starts task
QE="Verifying" Queue entry

\ 4

Cleanup (optional)
(CleanupTask)
Host="Cleaning"

Success Fail

\ 4

Verfy (optional)
Cleanuppverify failed | post Repair

Machine (VerifyTask) Fal
> o \anymg“ [——» RequeueQE | —3| (RepairTask)

recovery

Machine recovery

stops here

Repair host Repairing’
Success Success,
Y
Machine Repair succeeded
ready Host
Host="Ready (QE restarts)
Y Non-metahost
Pending queue entry
(setEntrypendingTask) | synchronous Job ready?
Qe—‘pending’ [3] (anough hosts
Host="Pending verified to run)
Job failed
Failed"
Asynchronous es lNu
A 2
torun Enough hosts left
to possibly run?

Yes No

\ 4

un autosens Wait for other
eTask)
hosts

stopped

Gather logs If
Autoserv was kiled Host Cleanup (optional)
(GatherlogsTask) [(CleanupTask
QE="Gathering" Host="Cleaning

Fail

Queue entry Success

\ 4

Final reparse of
results
(FinalReparseTask)
QE="Parsing"

Success, gail

Host

Job complete
QE="Completed"

Ready”

_images/jobview.png
AGTOTect

File Edit View History Bookmarks Tools Help

500gle Y]

-@ 4% [httpilocalhost:8000afefserver/clientjautotest AfeclientyafeClier || b

E g i A + + + Frontend | Admin | Resulis (Old TKO) | Documentation | Feeds: Completed, Failed |

JobLia CreseJob HostLit View Host s
Fetch job by ID: [1 Go

Job: run some tests (1-alincoln)

Clone job.

Label: run some tests
Owner: alincoln
Priority: Medium
Created: 2008-01-10 15:
Timeout: 72 hours
Email List:

Status: 2 Failed, 2 Completed, 1 Aborted
Client control file (asynchronous):

et step_init():
Job.next_step((step_test])
testkernel = job.kernel('2.6.18-re3-mml ")

testkernel .install()
testkernel .boot () =i

def step_test():
Job.run_test (*aiostress')

Job.run_test (*bonnie’)

def client():

Job.run_test('netperf2’, '127.0.0.1', '127.0.0.1', ‘client’, tag='client')

det server():

3ob.run_test('netperf2¢, '127.0.0.1%, '127.0.0.1', ‘merver', tag='server')
3ob.parallel ((server], (client])
Full results (open in new window) (new results interface) (raw results logs) E

[Done. 1K)

_images/existing_scripts_interface.png
MAufofesf

Spreadsheet Table

W] Test details | Refresh || Saved queries

Graph Type:

Existing Graphs)

[Normalize Performance (allows multiple benchmarks on one graph)
Hostname: |]

Benchmark: [(please select a hostname first)

Kernel: [all

Graph

_images/tko.png
New Release Patch

1 1)

Mirror / Trigger Maual job

\/

Server Job Queties

i3
Client Harness

i3
Results Collation

!

Resuits Analysis

1

Results Publication

_images/graphing_filter.png
®all of O'any of
[Testindex Bl X1
Add Filter]

View Filter Strind [edt riter string |

_images/hostedit.png
Fle Edit View History Bookmarks Tools Help
G- - @ (@ [0 htpiocalhost:8000/afe/serverjadmin/aferhost/a/ o S
Home » Hosts » sanfrancisco
Change host
Hostname: sanfrancisco
I Locked
Protection: No protection
Labels: +*
Available labels
Q Select your choica(z) and dick Q)
06 xB6_64
ppced
(]
(¢]
© choose all @ Clearall
® Delete Save and add ancther | ave and continue ediing | [11]
Done 6o

_images/codeflow.png
‘‘‘‘‘‘‘‘
eeeeeeeeee

‘‘‘‘‘‘‘‘

_images/overall_structure.png
= SERVER

Frontend
MYSQL DB

MoNITOR DB

cLster

RESULTS
MYSQL DB

RESULTS
REPOSITORY

ANALYSIS

" BACKEND

nav.xhtml

 Table of Contents

 		Autotest Documentation

 		Autotest Documentation

 		General Information

 		Contact information

 		Who uses autotest?

 		Autotest structure overview

 		Autotest White Paper

 		Autotest Development Community Size

 		Local (Former Client)

 		Autotest Client Quick Start

 		Client Control files

 		Control file specification

 		Test modules development

 		Adding tests to autotest

 		Using and developing job profilers

 		Linux distribution detection

 		Quickly detecting the Linux distribution

 		The unknown Linux distribution

 		Writing a Linux distribution probe

 		API Reference

 		External downloadable tests

 		Keyval files in Autotest

 		Diagnosing failures in your results

 		Remote (Former Server)

 		Autotest Remote (Autoserv)

 		Autotest Server Quick Start

 		Autoserv Client Install

 		Autotest server interaction with clients

 		Writing server-side control files

 		The Host classes

 		Synchronize clients in multi machine (server) tests

 		Autoserv message logging specification

 		Conmux - Console Multiplexor

 		Installing a Conmux Server

 		Conmux - Original Documentation

 		ACL Behavior Reference

 		Frontend

 		Autotest Command Line Interface

 		Access Control List Management - autotest-rpc-client acl

 		Host Management - autotest-rpc-client host

 		Job Management - autotest-rpc-client job

 		Label Management - autotest-rpc-client label

 		Test Management - autotest-rpc-client test

 		User Management - autotest-rpc-client user

 		Frontend Database (autotest_web)

 		Understanding the TKO Results Database

 		TKO results database

 		MySQL replication

 		RPC Server

 		Web Frontend HOWTO

 		Web Frontend Roadmap

 		Configuring hosts on the Autotest server

 		Setting a Graphing Filter

 		Preconfigured Graphing Queries

 		Using the Metrics Plot Frontend

 		Metrics Preconfigs

 		Machine Qualification Preconfigs

 		TKO Web Interface Requirements

 		Autotest Reporting API

 		Autotest Web Frontend Implementation details

 		Host Protection Levels

 		Specifying kernels in the Job Creation Interface

 		Using the Machine Qualification Histogram Frontend

 		Existing Graphing Scripts Frontend

 		System Administration

 		Installing an Autotest server (Ubuntu/Debian version)

 		Installing an Autotest server (Red Hat version)

 		Autotest Server Install - Set up MySQL

 		Autotest Server/Scheduler/WebUI Install script

 		Autotest Server Troubleshooting

 		Setting up an Autotest Drone (Results Server)

 		System Administration Tips and Tricks

 		Virt Test specific configuration

 		Important server configuration for virt-test

 		Update virt test config files

 		Analyze virt job execution results

 		Setting up a distributed Autotest production environment

 		Using the autotest package management with autoserv

 		Scheduler

 		Scheduler specification

 		Job and Host Statuses

 		Advanced Job Scheduling

 		Autotest Scheduler Roadmap

 		General Overview

 		TKO parse documentation

 		Developer

 		Downloading the Source

 		Autotest's Directory Structure

 		Autotest Code Submission Check List

 		How to use git to contribute patches to autotest

 		Life cycle of an idea in autotest

 		Workflow Details

 		Topic Issues

 		Topic Issue States

 		Pull Requests

 		Pull Request Updates

 		Mail List Publishing

 		Autotest Test API

 		Submission common problems

 		Autotest requirements

 		Autotest Design Goals

 		Autotest Maintenance Docs

 		Global Configuration

 		Adding site-specific extensions

 		Autotest status file specification

 		Autotest job results specification

 		Documentation

 		Autotest Unittest suite

 		Web Frontend Development

 		Using the Autotest Mock Library for unit testing

 		client Package

 		autotest_local Module

 		base_sysinfo Module

 		base_utils Module

 		bkr_proxy Module

 		bkr_xml Module

 		client_logging_config Module

 		cmdparser Module

 		common Module

 		config Module

 		cpuset Module

 		fsdev_disks Module

 		fsdev_mgr Module

 		fsinfo Module

 		harness Module

 		harness_autoserv Module

 		harness_beaker Module

 		harness_simple Module

 		harness_standalone Module

 		job Module

 		kernel Module

 		kernel_config Module

 		kernel_versions Module

 		kernelexpand Module

 		kvm_control Module

 		local_host Module

 		lv_utils Module

 		optparser Module

 		os_dep Module

 		parallel Module

 		partition Module

 		profiler Module

 		setup Module

 		setup_job Module

 		setup_modules Module

 		sysinfo Module

 		test Module

 		test_config Module

 		utils Module

 		xen Module

 		Subpackages

 		net Package

 		profilers Package

 		shared Package

 		tools Package

 		frontend Package

 		Subpackages

 		afe Package

_images/GitTrackingIssueWorkflow.png
Tracking Issue

Topic Issue Pull Request Topic Issue Topic Issue
(Assigned) (Assigned) (Unassigned) (Closed)
Pull Request Pull Request
Mail Thread|
(Open) il Thread(s) (Closed)

_images/block_structure.png
USER
INTERFACE

WEB INTERFACE COMMAND LINE INTERFACE

DIANGO

DATABASES &
REPOSITORIES

SERVER

CLIENTS

cuent | cuent | cuent | cuent | cuent | cuent

— > —>

_images/new_tko.png
Embedded

Iterationattribute. IterationReslt

st st st bsts

</

machine

Machine

_images/job_flow.png

_static/comment-close.png

_static/up.png

_images/adminhostlist.png
File Edit View History Bookmarks Tools Help

Home » Hosts

- E0n

L httpilocalhost:8000/afe/serverfadminjafe/host/

Select host to change
Q Go [—
Hostname Platform Locked Status :‘Y (SER]
fortwayne 1386 ° Ready e
berlin x4 © Ready i385
Ppesd
odessa ppcsd @ Ready
By locked
london iags ° Ready ok
waterloo i386 ° Ready Yes
sanfrancisco xs6_64 © Ready N
washington xs6.64 © Ready By GrRadi
A
No protection
7 hosts
Repair filesystem only
Do not repair
Done R

_static/minus.png

_static/down-pressed.png

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

_static/comment.png

_static/down.png

_static/up-pressed.png

_images/frontend.png

_images/admin.png
File Edit View History Bookmarks Tools Help

@->-& (&% [httpylocalhost:2000/afe/serverjadmin/

Site administration

Acl groups
Hosts
Labels
Profilers
Tests

#add
#add
#add
#add
#add

Change
Change
Change
Change
 change

Recent Actions

My Actions

#Basic admin
Group

debug_user
User

#Basic admin
Group

#Basic admin
Group

debug_user
User

debug_user
User

Done

_images/hostlist.png
File Edit View History Bookmarks Tools Help

LI httpslocalhost:8000/afe/server/client/autotest AfeClient/Afeclient | +| b |

€« >-euR
EQ i A + + + Frontend | Admin | Resulis (Old TKO) | Documentation | Feeds: Completed, Failed

Job List View Job Create Job m View Host _Refresh

Hostname

Platform [All platforms]

Label [AllTabels

Status Alvalues |

Locked [Allvalues ~|

ACL accessible only I~ ACL accessible only

<<First <Previous 17 0f7 Next> Last>>
Hostname Platform Other labels Status Locked
berlin X86_64 Ready No
fortwayne (386 Ready No
london 386 Ready No
odessa ppe6d Ready No
sanfrancisco x86_64 Ready No
washingion x86_64 Ready No
waterloo 386 Ready No
<<First <Previous 17 0f7 Next> Last>>

bone)

_images/metrics_interface.png
MAufofesf

Spreadsheet Table

(Saved queries

Il Test details

Graph Type: | Metrics plot

Preconfigured: v
Plot: [Line[v
X-axis values: |(single Point) v]

Global filters: ®all of O any of

[Test index =l |1
Add Filter]

View Filter Strind [edt riter string |

Series:
Name: [Invert y-axs
Vlues: e
Aggregation: [AvG v| O error bars
Filters:
®all of O any of
[Test Index Bl X1

Add Filter

View Filter Strind [edt riter string |

Delete Series
Add Series

No normalization (multiple subplots)
® No normalization (single plot)
Specified series:

First data point

Specified X-axis value:

Normalize to:

_images/hostview.png
AGTOTect A= MOZiI1a FITerox

File Edit View History Bookmarks Tools Help

-@ 4% [httplocalhost:8000afefserver/clientjautotest Afeclientyafeclien | ~ | b»]

E g i A + + + Frontend | Admin | Resulis (Old TKO) | Documentation | Feeds: Completed, Failed

JobList View Job Create Job Host List Refresh
Fetch host: odessa Go

Host odessa

Platform: ppe64.
Other labels:
Status: Ready
Locked: No

View Verify/Repair Logs

Jobs for this host:
<<First <Previous 1-30f3 Next> Last >>
JobID Job Owner Job Name Status
4 alincoln very important job Queued
3 alincoln server job Queued
1 alincoln run some tests Aborted
<<First <Previous 1-30f3 Next> Last>>

bone)

_images/GitTrackingIssueStates.png
Topic-issue

Submit Web-form Topic-issue

Open

New Unassigned

Re-Worg

VN | oeis

_images/kernbench-moe.png
kernbench.noe

114

110 |

(spuooas) ouTa pasdera

102 |

100 |-

£ou-gT°0°2
THu-g0u-9T°9°
Zou-91°9°2
69TggdsGUU-TOU-9T 9"
GuU-T94-9T°9°
POLTEdspHu=TOu-9T 9"
PHU-T94-9T°9°2
£9bTgdsguu-Tou-gT 9"
TETgdsguu-TOu-9T 9"
£9TTgdsguu-Tou-9T 9"
86024 THU-TOu-9T 9"
Tou-9T°9°2

e'aT°9°z

beaTea'z

e'aT°e'z

z°ar°9°z

TaTee'z
£660edspuI-GT"9°2
puu-gT°9°Z
GEBORdsENI-GT 9T
BbbogdsEuu-GT 92
26902d+Euu-GT9°2
GagdsENu-GT 9"
euu-gT°9°2
£886TdsTHI-GT 9
sree'z

roa-gTo9°z
904-5T°9°2
£806Tdsguu-GOu—GT 9"
THU-GO4-GT9°2
50u-T°9°2
bou-gT°9°z
THu-£94-6T°9°
£0u-gT°9°2
THu-gou-GT°9°
20u-5T°9°2
guu-T94-6T°9°2
THU-TO4-GT°9°
Tou-gT°9°2

TrTeeE

THu-bT 02

breez
THU-GOU-bT 9"
S0u-bT 9z
THU-OI-bT 9%
bou-bToa'z
Quu-gou-bT°9°2
THU-gou-bT 9"
20u-bT°9°2
THU-TOu-bT 9%
ToubTo0°2
euu-gT°9°z

THu-ET 92

ereez

2

2

2
2
2
2

elkernel

other —¥—i

nainline ——

