
Autotest — Testing the Untestable

John Admanski
Google Inc.

jadmanski@google.com

Steve Howard
Google Inc.

showard@google.com

Abstract

Increased automated testing has been one of the most
popular and beneficial trends in software engineering.
Yet low-level systems such as the kernel and hardware
have proven extremely difficult to test effectively, and as
a result much kernel testing has taken place in a manual
and relatively ad-hoc manner. Most existing test frame-
works are designed to test higher-level software isolated
from the underlying platform, which is assumed to be
stable and reliable. Testing the underlying platform it-
self requires a completely new set of assumptions and
these must be reflected in the framework’s design from
the ground up. The design must incorporate the machine
under test as an important component of the system and
must anticipate failures at any level within the kernel
and hardware. Furthermore, the system must be capable
of scaling to hundreds or even thousands of machines
under test, enabling the simultaneous testing of many
different development kernels each on a variety of hard-
ware platforms. The system must therefore facilitate ef-
ficient sharing of machine resources among developers
and handle automatic upkeep of the fleet. Finally, the
system must achieve end-to-end automation to make it
simple for developers to perform basic testing and incor-
porate their own tests with minimal effort and no knowl-
edge of the framework’s internals. At the same time, it
must accommodate complex cluster-level tests and di-
verse, specialized testing environments within the same
scheduling, execution and reporting framework.

Autotest is an open-source project that overcomes these
challenges to enable large-scale, fully automated test-
ing of low-level systems and detection of rare bugs
and subtle performance regressions. Using Autotest at
Google, kernel developers get per-checkin testing on a
pool of hundreds of machines, and hardware test engi-
neers can qualify thousands of new machines in a short
time frame. This paper will cover the above challenges
and present some of the solutions successfully employed
in Autotest. It will focus on the layered system architec-

ture and how that enables the distribution of not only
the test execution environment but the entire test control
system, as well as the leveraging of Python to provide
simple but infinitely extensible job control and test har-
nesses, and the automatic system health monitoring and
machine repairs used to isolate users from the manage-
ment of the test bed.

1 Introduction

Autotest is a framework for fully automated testing of
low-level systems, including kernels and hardware. It
is designed to provide end-to-end automation for func-
tional and performance tests against running kernels or
hardware with as little manual setup as possible. This
automation allows testing to be performed with less
wasted effort, greater frequency, and higher consistency.
It also allows tests to be easily pushed upstream to vari-
ous developers, moving testing earlier into the develop-
ment cycle.

Using Autotest, kernel and hardware engineers can
achieve much greater test coverage than such compo-
nents usually receive. This typical lack of effective
low-level systems testing comes with good reason: au-
tomated testing of such systems is a difficult task and
presents many challenges distinct from userspace soft-
ware testing. This paper introduces the requirements
Autotest aims to meet and some of the unique challenges
that arise from these requirements, including robust test-
ing in the face of system instability, scaling to thousands
of test machines, and minimizing complexity of test ex-
ecution and test development. The paper will discuss
solutions for each of these challenges that have been em-
ployed in Autotest to achieve effective, fully automated
low-level systems testing.

2 Background

High-quality automated testing is a necessity for any
large, long-lived software project to maintain stability

1



Autotest
Client

Test Machine

Autotest
Client

Test Machine

Autotest
Client

Test Machine

Autotest
Client

Test Machine

Autoserv

Test Server

Autoserv

Test Server

Autoserv

Frontend

Control Server

Job
Scheduler

USERS

Figure 1: High level operation of a complete Autotest system

while permitting rapid development. This is as true for
the Linux kernel and other system software as it is for
user-space software. However, so far the benefits of
automated testing have been most successfully realized
within user-space applications.

Most existing test automation frameworks are targeted
at software running on top of the platform provided by
the hardware and operating system, the realm in which
nearly all software operates. By taking advantage of
the assumption that an application is running in a re-
liable standardized environment provided by the plat-
form, a framework can abstract away and simplify most
of the underlying system. When attempting to provide
the same services for kernel (and hardware) testing, this
assumption is no longer reasonable since the underlying
system is an integral component of what is being tested.
This was part of the original motivation for the develop-
ment of the first versions of Autotest and its predecessor,
IBM Autobench[5][4].

Autotest begins with the goal of testing the underlying
platform itself, and this goal engenders a unique set of
requirements. Firstly, because the platform on which

Autotest runs is itself under test, Autotest must be built
from the ground up to assume system instability. This
requires graceful handling of kernel panics, hardware
lockups, network failures, and other unexpected fail-
ures. In addition, tasks such as kernel installation and
hardware configuration must be simple, commonplace
activities in Autotest.

Secondly, because the platform under test cannot be eas-
ily virtualized, every running test requires a physical
machine. Hardware virtualization may be used for basic
kernel testing, but as it fails to produce accurate per-
formance results and can mask platform-specific func-
tional issues it is useful only for the most basic kernel
functional verification. Autotest is therefore built to run
every test on a physical machine, both for kernel and
hardware testing. This makes coordination among mul-
tiple machines a core necessity in Autotest and further-
more implies that scaling requires distribution of testing
among hundreds or even thousands of machines. This
additionally creates a need for a system of efficient shar-
ing of test machines between users to maximize utiliza-
tion over such a large test fleet.

2



Finally, Autotest must fulfill the generic requirements
of any testing framework. In particular, Autotest must
minimize the overhead imposed on test developers. It
must be trivial to incorporate existing tests, easy to write
simple new tests, and possible to write complex multi-
process or multimachine tests, all within the same basic
framework. Furthermore, developing tests should be a
simple, familiar process, requiring interaction with only
a small subset of the available infrastructure. Tests must
therefore be easily executable by hand and simultane-
ously pluggable into a large-scale scheduling system.
These levels of abstraction are broken down into distinct
modules discussed in more detail throughout this paper.

As illustrated in Figure 1, the lowest layer of the sys-
tem is the Autotest client, a simple test framework that
runs on individual machines. The next layer, Autoserv,
is designed to run on centralized test servers to automat-
ically install and execute clients and to coordinate multi-
machine tests. The outermost layer consists of a single
frontend and job scheduler to allow multiple users to
share a single test fleet and results repository. Note that
the dependencies go in only one direction making the
design more modular and allowing users to interact with
the system on multiple levels. On a large scale users can
push a button on a web interface to launch a complete
test suite on a large cluster of machines while on a small
scale users can run a single test on a local workstation
by executing a shell command.

2.1 Related work

The Linux Test Project "has a goal to deliver test suites
to the open source community that validate the reliabil-
ity, robustness, and stability of Linux"[1]. It is a collec-
tion of functional and stress tests for the Linux kernel
and related features as well as a client infrastructure for
test execution. The client infrastructure eases the ex-
ecution of a many tests (there are over 3,000 tests in-
cluded), supports running tests in parallel, can generate
background stress during test execution, and generates a
report of test results at the end of a run. LTP is not, how-
ever, intended to be a general-purpose, fully-automated
kernel testing framework. There are a number of Au-
totest goals that are specifically non-goals of LTP[8]. It
is essentially a collection of tests and is therefore suit-
able for inclusion into Autotest as a test, and indeed such
inclusion has been easily done.

An automation framework called Xentest was developed

for testing the Xen virtualization project. David Bar-
rera et al. note that “testing Linux under Xen and test-
ing Linux itself are very much alike” and perform part
of their testing by “running standard test suites under
Linux running on top of Xen”, including LTP[3]. Since
testing Xen is much like testing the underlying hardware
itself the goals of Autotest share much in common with
those of Xentest, both from a kernel testing and a hard-
ware testing point of view. Xentest is a collection of
scripts with support for building and booting Xen, run-
ning tests under it, and gathering results logs together. It
does not support any automated analysis of test results
to determine pass/fail conditions. Test runs are config-
urable by a control file using the Python ConfigParser
module. This provides simple configuration but lacks
any programmatic power within control files. Finally,
Xentest is built closely around Xen and does not aim to
be generic framework for kernel or hardware testing. On
the other hand, Autotest could be used to perform Xen
testing much like Xentest does and some work has been
done on this in the past.

Crackerjack is another test automation system, one de-
signed specifically for regression testing[10]. It focuses
on finding incompatible API changes between kernel
versions. This is valuable testing but is a narrower focus
from that of Autotest.

Two frameworks that address the problem of distributed
kernel testing are PyReT[6] and ANTS[2]. The former
depends on a shared file system for all communications
while the latter uses a serial console. Both of these re-
quirements on test machines were deemed too restrictive
for Autotest, which relies solely on an SSH connection
for communications. ANTS is quite robust to test ma-
chine failures, as it configures all test machines from
scratch using network booting and is capable of using
remote power control to reset and recover machines that
have become unresponsive. The system additionally in-
cludes a machine reservation tool so that machines can
be shared between developers and the automated sys-
tem without conflict. These are all important features
that have found their way into Autotest. However, the
system is built strictly for nightly testing and does not
support a general queue of user-customizable jobs. It
includes very limited results analysis in the form of an
email report upon completion of the night’s tests. It runs
a number of open-source tests (including LTP) but does
not support more complex, multimachine tests. Finally,
the system is proprietary and therefore of little direct

3



utility to the community.

For distributed performance testing of the kernel there
exist systems presented by Alexander Ufimtsev[9] and
Tim Chen[7]. In both systems, test machines operate
autonomously, running a client harness which moni-
tors the kernel repository, building and testing new re-
leases as they appear. In this sense, the systems are
built around the specific purpose of per-release testing,
although the latter system includes support for testing
arbitrary patches on any kernel. Both systems’ clients
transmit results to a central repository, a remote server in
the former case and a shared database in the latter. The
former system includes some automated analysis for re-
gression detection based on differences from previous
averages, a task not yet implemented in Autotest. The
latter system includes a web frontend displaying graphs
of each benchmark over kernel versions, with support
for displaying profiler information, rerunning tests or
bisecting to find the patch responsible for a regression.
Autotest includes partial support for these features but
could benefit from improvements in this area.

3 Autotest Client

The most basic requirement that Autotest is intended to
fulfill is to provide an environment for running tests on
a machine in a way that meets the following criteria:

1. The lowest, most bare-metal access must be avail-
able.

2. Test results are available in a standard machine-
parseable way.

3. Standard tests developed outside of the framework
can be easily run within it.

The first of the criteria, low-level system access, seems
fairly self-evident when writing tests which are aimed at
the kernel and the hardware itself. To test a particular
component of a system, the test must be written using
tools that have access the standard API for that compo-
nent. Since C is the lingua franca of the systems world,
a C API can generally be counted on as being available,
but even that isn’t always the case. When creating a file
system during a test, mkfs is going to be the easiest
and most readily available mechanism; so as well as be-
ing able to easily incorporate custom C the framework
must also make it easy to work with external tools.

This initial requirement could have been satisfied by
writing the framework itself in C, but that would ulti-
mately have conflicted with the other requirements that
Autotest was expected to meet. First, this would’ve
made calling out to external applications ultimately
more difficult; while functions like fork, exec,
popen and system provide all the basic mechanisms
needed to launch an external process and collect results
from it, working with them in C requires a relatively
large amount of boilerplate compared to a higher-level
scripting language such as Perl or Python. This only be-
comes more true if the output of the executed process
needs to be manipulated and/or parsed in any way. The
second requirement that test results be logged in a stan-
dard way almost guarantees that the test will need to do
string manipulation, another task simplified by using a
scripting language.

To meet these somewhat conflicting requirements, the
Autotest framework itself was written in Python, with
utilities provided to simplify the compilation and exe-
cution of C code. Tests themselves are implemented by
creating a Python module defining a test subclass, sat-
isfying a standardized, pre-defined interface. Individual
tests are packaged up in a directory and can be bundled
along with whatever additional resources are needed,
such as data files, C code to be compiled and executed
or even pre-compiled binaries if necessary.

This also satisfies the third of the three requirements, the
ability to run standard tests written independently of Au-
totest. All that is required is to bundle the components
necessary for the test with a simple Python wrapper. The
wrapper is responsible for setting up any necessary en-
vironment, executing the underlying test, and translat-
ing the results from the form produced by the test into
Autotest standard logging calls. The wrappers are gen-
erally quite simple; the median size of a test wrapper in
the current Autotest distribution is only 38 lines.

Using Python for implementing tests also provides an
easy mechanism for bundling up suites of tests or cus-
tomizing the execution of specific tests. Tests them-
selves are executed by writing a “control file” which is
simply a Python script executing in a predefined envi-
ronment. It can be a single line saying “execute this
test”, a more complex script that executes a whole se-
quence of tests, or even a script that conditionally exe-
cutes tests depending on what hardware and kernel are
running on the machine. The environment provided by
Autotest contains additional utilities that allow control

4



files to put the machine into any state necessary for ex-
ecuting tests, even if it requires installing a kernel and
rebooting the machine. Having the full power of Python
available allows test runners to perform limitless cus-
tomization without having to learn a custom job control
language.

This power does come with one major drawback,
though. Due to the dynamic nature of Python and the
power available to control files, it is impossible to stat-
ically determine much information about a job. For ex-
ample, it is impossible to know in advance what tests a
job will run, and indeed the set of tests run may poten-
tially be nondeterministic. This limitation has not been
severe enough to outweigh the benefits of this approach.

3.1 Installation Problems

As this system was put into use at Google, the instal-
lation of Autotest onto test machines quickly became a
serious performance issue. Allowing test developers to
bundle data, source code and even binaries with their
tests made it easy to write tests but allowed the instal-
lation size to grow dramatically. The situation could be
somewhat alleviated by minimizing how often an install
was necessary, but in practice this only helps if the test
framework can be pre-installed on the systems.

The solution to this problem is a fairly standard one:
rather than treating Autotest and its test suite as a single,
monolithic package, break it up into a set of packages:

• a core package containing the framework itself

• packages for the various utilities and dependencies
such as profilers, compilers and any non-standard
system utilities that would need to be installed

• packages for the individual tests

Each package is able to declare other packages as de-
pendencies. The core package can be installed every-
where and is fairly lightweight, consisting only of a set
of Python source files without any of the more heavy-
weight data and binaries required by some tests. When
executing a job, the framework is then able to dynami-
cally download and install any packages needed to exe-
cute a specific test.

4 Autotest Server

4.1 Distributing test runs across machines

The Autotest client provides sufficient infrastructure for
running low-level tests but it only executes tests and col-
lects results on a single machine. To test a kernel on
multiple hardware configurations, a tester would need
to install the test client on multiple machines, manually
run jobs on each of these machines, and examine the
results scattered across these systems.

This deficiency led to the development of Autoserv, an
Autotest Server, a separate layer designed around the
client. It allows a user to run a test by executing a
server process on a machine other than the test machine.
The server process will connect to the remote test ma-
chine via SSH, install an Autotest client, run a job on
the client, and then pull the results back from the test
machine. Localizing these server runs to a single ma-
chine allows users to run test jobs on arbitrary sets of
machines while collecting all the results into a central
location for analysis.

4.2 Recovering failed test systems

Once users start running tests on larger sets of machines,
dealing with crashed systems becomes a much more
common occurrence. As the number of test machines
increases, bad kernels (and random chance) are going to
result in more failed systems. When testing on a single
machine, manual intervention is the simplest method of
dealing with failure, but this does not scale to hundreds
or thousands of machines. Automation becomes neces-
sary with two major requirements:

• Automatically detect and report on test machine
failures

• Provide a mechanism for repairing broken systems

Handling these requirements entirely within the client
running on the test machine is impractical; detecting
and reporting a kernel panic or hardware failure will
not even be possible when the crash kills the test pro-
cesses on the machine. Similarly, repair may require
re-imaging a machine which will wipe out the client it-
self.

5



With job execution controlled from a remote machine,
handling these requirements becomes feasible. Au-
toserv implements support for monitoring serial console
output, network console output and general syslog out-
put in /var/log. It can also interact with external ser-
vices that collect crash dumps and even power cycle the
machine if that capability is available. In the very worst
case the server process can at least clearly log the failure
of the job (and any tests it was running) along with the
last known state of the failed test machine.

Automated repair can also be performed. This is im-
plemented in Autoserv in an escalating fashion, first by
making several attempts to put the machine back into a
known good state, then by optionally calling out to any
local infrastructure in place to carry out a complete rein-
stallation of the machine, and finally, if necessary, by es-
calating the repair process to a human. Testing on large
numbers of machines now becomes much more practi-
cal when systems broken by bad kernels (or bad tests)
can be put back into a working state with a minimum of
human intervention.

4.3 Multi-machine tests

Remote control of test execution also introduces the
opportunity to run single tests that span multiple ma-
chines. While this could be done with the Autotest client
alone by running the client on a master test system and
having it drive other slave test systems, this would re-
quire duplicating most of the “remote control” infras-
tructure from the server directly into the client. This
could also be problematic from a security point of view
since, rather than routing control through a single server,
the test machines would require much more liberal ac-
cess to one another.

Since Autotest already established the need for a sep-
arate server mechanism, it was natural to extend it to
support “server-side” testing. Instead of only providing
a fixed set of server operations (install client and run job,
repair, etc.), Autoserv allows testers to supply a Python
control file for execution on the server, just like on the
client. This can be used to implement, for example, a
network test with the following flow:

• Install Autotest client on two machines

• Launch “network server” job on one machine

• Launch “network client” job on one machine

• Wait for both jobs to complete and collect results

No single-machine networking test can duplicate the
same results, particularly when attempting to quantify
networking performance and not just test the stability of
the network stack.

This also allows for execution of larger-scale cluster
testing. Although this begins to creep beyond the scope
of systems testing it still has significant value, not as a
way to test the cluster applications but rather as a way
of testing the impact of kernel and hardware changes
on larger-scale applications. A smaller-scale cluster test
can follow a workflow similar to that for network test-
ing. Alternatively, a server job can make use of pre-
existing cluster setup and management tools, simply
driving the external services and collecting results af-
terwards.

4.4 Mitigating Network Unreliability

While one of the primary goals of Autoserv is to in-
crease reliability, it also introduces new unreliabilities as
an unfortunate side effect. The primary issue is that it in-
troduces a new point of failure, the connection between
the server and the client machines. Working directly
with the client, a user can launch a job on a machine
and return after expected completion, and any transient
network issues will not affect the test result. This is no
longer the case when the job is being controlled by a re-
mote server that continuously monitors the test machine.
The problem can be alleviated somewhat by periodically
polling the remote machine rather than continually mon-
itoring it, but ultimately this only reduces susceptibility
to the problem.

Implementing more reliable communications over
OpenSSH ultimately proved too difficult, primarily due
to the lack of control over and visibility into network
failure modes. One alternative considered was to use
a completely separate communication mechanism, but
this was rejected as impractical. Using SSH provides
Autotest with a robust and secure mechanism for com-
munication and remote execution, without requiring the
large investment of time and labor required to invent a
custom protocol that would then need to be installed on
every test machine.

Instead the solution was to add an alternative SSH im-
plementation that uses a Python package (paramiko1)

1http://www.lag.net/paramiko/

6



instead of launching an external OpenSSH process. Us-
ing an in-process library allowed tighter integration and
communication between Autoserv and the SSH imple-
mentation, allowing the use of long-lived SSH connec-
tions with automatic recovery from network failure. At
the same time modifications were made to the Autotest
client to allow it to be run as a detachable daemon so
that the automatic connection recovery could re-attach
to clients with no impact on the local testing.

Adding paramiko support had the additional benefit
of reducing the overhead of executing SSH operations
from Autoserv by performing them in-process, as well
as simplifying the use of multi-channel SSH sessions
to avoid the cost of continually creating and terminat-
ing new sessions. Within Autoserv this is implemented
in such a way that the paramiko-based implementation
can be used as a drop-in replacement for the OpenSSH-
based one, allowing testers to make use of whichever
is better suited to their needs. OpenSSH works better
“out of the box” with most Linux configurations, while
paramiko, which requires more setup and configuration,
ultimately allows for more reliable, lightweight connec-
tions.

5 Scheduler and Frontend

5.1 Shared machine pool

Autoserv provides a convenient and reliable way for in-
dividual users to test small numbers of platforms. As a
standalone application, however, it cannot possibly ful-
fill the requirement of scaling to thousands of machine
and achieving efficient utilization of a shared machine
pool. To address these needs the Autotest service ar-
chitecture provides a layer on top of Autoserv that al-
lows Autotest to operate as a shared service rather than
a standalone application. Rather than execute the Au-
totest client or server directly, users interact with a cen-
tral service instance through a web- or command-line-
based interface. The service maintains a shared machine
pool and a global queue of test jobs requested by users.
There are three major components that make this usage
model possible. The Autotest Frontend is an interface
for users to schedule and monitor test jobs and manage
the machine pool. The Autotest Scheduler is responsi-
ble for executing and monitoring Autoserv to run tests
on machines in the pool in response to user requests. Fi-
nally, the results analysis interface, not discussed in this

paper, provides a common interface to view, aggregate
and analyze test results.

The Autotest Frontend is a web application for schedul-
ing tests, monitoring ongoing testing, and managing test
machines. It operates on a database which takes the
available tests, the machines in the shared test bed, and
the global queue of test jobs that have been scheduled by
users. The scheduler interacts with the frontend through
this database, executing test jobs that have been sched-
uled and updating the statuses of jobs and machines
based on execution progress.

The frontend supports a number of features to help users
organize the machine pool. First, the system supports
access control lists to restrict the set of users that can run
tests on certain machines. Some machines may be open
for general testing, but some users, particularly hard-
ware testers, will have dedicated machines that cannot
be used by others. Second, the system supports tagging
of machines with arbitrary labels. The most common
usage of this feature is to mark the platform of a ma-
chine, which is often important for both job scheduling
and results analysis. Labels can additionally be used to
declare machine capabilities, such as remote power con-
trol, or to group together large numbers of machines for
easier scheduling.

The scheduler is a daemon running on the server whose
primary purpose is to execute and monitor Autoserv pro-
cesses. The scheduler continuously matches up sched-
uled test jobs with available machines, launches Au-
toserv processes to execute these jobs, and monitors
these processes to completion. It updates the database
with the status of each job throughout execution, allow-
ing the user to track job progress. Upon completion,
the scheduler executes a parser to read Autoserv’s struc-
tured results logs into a database of test results. The
user can then perform powerful analysis of these results
through a special results analysis interface.

An important feature of the scheduler is its statelessness.
While it maintains plenty of in-memory state, all impor-
tant state can be reconstructed from the database. This
is exactly what happens upon scheduler startup, ensur-
ing that when the scheduler needs to restart, all tests will
continue running uninterrupted and machine time won’t
be wasted. This is critical for minimizing user impact
during deployments of new Autotest versions or after a
scheduler crash.

7



In addition, as the test fleet scales to thousands of ma-
chines, automated fleet health management becomes
critical. To this end, the scheduler takes advantage of
Autoserv’s machine diagnosis and repair functionality.
The scheduler launches special Autoserv processes to
verify machine health before each job and perform re-
pairs as necessary. Machines that cannot be repaired
are marked as such in the database, from which a ma-
chine health dashboard can read and summarize ma-
chine health data. Additionally, the scheduler performs
periodic reverification of known dead machines to catch
any manual repairs that may have occurred.

5.2 Distributed execution for scalability

When all Autoserv processes are running on a sin-
gle server, serious performance degradation tends to
set in around 1,000 simultaneous machines under test.
The scheduler supports global throttling of running pro-
cesses to avoid bringing the system to a halt, but this still
leaves a scalability limit imposed by the hardware itself.
To alleviate the problem and allow for further scaling,
the scheduler supports distributing Autoserv processes
among a pool of servers.

A single scheduler coordinates execution among mul-
tiple servers and all results are centralized on a single
archive server after execution completes. Each server
can support roughly 1,000 machines under test, and to
date no Autotest installation has reached a limit on the
number of servers that can be utilized in the system.
In addition to increasing scalability, distributed execu-
tion increases system reliability. Since execution servers
are completely independent of each other, each can fail
completely without bringing the entire service to a halt.
With this distributed execution model, the Autotest ser-
vice at Google has scaled to approximately 5,000 simul-
taneous machines under test.

5.3 Automatic generation of control files

To run a single test, users of Autoserv can run one of the
existing control files written for each test. However, in
order to run multiple tests within a single execution the
user must write a custom control file. While control files
have been kept as simple as possible, writing a custom
control file still presents a major barrier to entry for new
users. To this end, the Autotest Frontend simplifies the

process of running multiple tests by support automatic
generation of control files.

Creating a job through the frontend consists of select-
ing a number of tests, a number of machines, and a va-
riety of job options. The user can select tests from a
list, which includes a description of each test, and the
frontend will automatically generate a control file to run
the selected tests. Users may also specify a kernel to
install and select profilers to enable during testing and
the generated control file will incorporate all of these
options. This allows users to run moderately complex
jobs through Autotest with ease, without requiring any
knowledge of control files. Machines can be similarly
selected from a list, either one-by-one or in bulk based
on filtering by hostname or platform (or any other ma-
chine label). Furthermore, users may request that the
job run on any machine of a particular platform and al-
low the scheduler to select one at run time. This feature
helps increase utilization of shared test machines and
makes it particularly easy to run automated jobs without
a static, dedicated set of machines.

5.4 Support for high-level automation

The bulk of the work for the web frontend is per-
formed on the web server, which operates primarily as
an RPC server. It is written in Python using the Django2

web framework and communicates with a MySQL3

database. The web interface is a fully-fledged applica-
tion running in the browser implemented using Google
Web Toolkit4. It communicates with the server solely
through the RPC interface. There is also a command-
line interface, implemented in Python, which communi-
cates with the server through the same RPC interface.
This is made possible by the use of the lightweight
JSON5 data-interchange format which is easily im-
plemented in either language. Furthermore, custom
scripts can be written that access the RPC interface di-
rectly, providing the full capabilities of the web frontend
through a simple interface. This supports powerful and
easy high-level automation, allowing users to extend the
functionality of Autotest with external scripts layered on
top of the frontend.

2http://www.djangoproject.com/
3http://www.mysql.com/
4http://code.google.com/webtoolkit/
5http://www.json.org

8



6 Future Directions

Autotest has made great strides in automating the exe-
cution of kernel and hardware tests. But test execution
usually occurs in the context of a qualification process,
and the full qualification process remains a tedious and
rather mechanical ordeal. Qualifying a new kernel gen-
erally involves running a collection of functional and
performances tests over a large population of machines
representing a range of hardware platforms. The choice
of tests to execute may be dependent on the outcome
of earlier tests. The results must then be compared to
those for a known stable kernel to find statistically sig-
nificant deviations. Furthermore, a continuous testing
system would like to execute this entire process in a
fully-automated fashion, reporting deviations on a per-
change basis. Qualifying a collection of new machines
involves a similar, but not identical, process. In partic-
ular, individual machines will must be tracked through
a cycle of testing, triaging, and repairing by either up-
dating system software or manipulating hardware com-
ponents. At the same time, this individualized tracking
must scale to hundreds or thousands of machines, and
the process must culminate in a report of significant de-
viations from a known stable platform.

While Autotest abstracts away many of the low-level is-
sues involved in these processes, it does little to auto-
mate these higher-level processes. Successful automa-
tion of such processes is one of the major unsolved prob-
lems for the Autotest project. Fortunately, the high-level
automation support provided by the frontend makes it
possible to prototype solutions to these problems. Such
solutions can be built on top of the Autotest architecture
without requiring modifications to Autotest itself, and
indeed a number of such solutions have been built to
satisfy needs of particular Autotest users. These proto-
types provide a useful path forward to incorporate such
automation into the Autotest system.

In addition, improved reporting remains an area of great
opportunity for Autotest. Autotest’s current reporting
interface can generate a variety of reports, potentially
spanning multiple jobs, but it still requires a significant
manual effort to draw useful high-level conclusions and
it still makes triage of failures a difficult task. To aid
the former task, Autotest needs to support better auto-
mated folding of larger amounts of data into smaller,
more concise reports which highlight significant qual-
ity deviations and hide the rest of the data. For easier

triaging of failures, Autotest needs to better categorize
and organize test output and more efficiently guide users
to the places where failure details are most likely to be
found.

7 Conclusion

A significant amount of developer time has been in-
vested in Autotest to enable the continuous execution of
small- and large-scale tests on thousands of machines.
This effort has successfully overcome numerous prob-
lems with reliability and scalability inherent in testing
low-level systems such as the kernel and hardware com-
ponents. While further work remains to be done to im-
prove and automate the high-level testing workflow, the
fundamental components are in place and already usable
for large-scale testing today.

Acknowledgements

We would like to thank Martin Bligh for his input to and
his reviews of drafts of this paper.

Legal Statement

This work represents the view of the authors and does
not necessarily represent the views of Google.

Linux is a trademark of Linus Torvalds in the United
States, other countries, or both.

Other company, produce and service names may be the
trademarks or service marks of others.

References

[1] Linux Test Project.
http://ltp.sourceforge.net.

[2] Jason Baietto. Linux Quality Assurance Utilizing
An Automated Nightly Test System. http:
//www.ccur.com/isddocs/ANTS.pdf.

[3] David Berrera, Li Ge, Stephanie Glass, and Paul
Larson. Testing the Xen Hypervisor and Linux
Virtual Machines. In Linux Symposium, volume 1,
pages 271–288, 2005.

9



[4] Kamalesh Bibulal and Balbir Singh. Keeping the
Linux Kernel Honest. In Linux Symposium,
volume 1, pages 19–29, 2008.

[5] Martin Bligh and Andy P. Whitcroft. Fully
Automated Testing of the Linux Kernel. In Linux
Symposium, volume 1, pages 113–125, 2006.

[6] Aaron Bowen, Paul Fox, James M. Kenefick Jr.,
Ashton Romney, Jason Ruesch, Jeremy Wilde,
and Justin Wilson. Automated Regression
Hunting. In Linux Symposium, volume 2, pages
27–35, 2006.

[7] Tim Chen, Leonid I. Ananiev, and Alexander V.
Tikhonov. Keeping Kernel Performance from
Regressions. In Linux Symposium, volume 1,
pages 93–102, 2007.

[8] Subrata Modak and Balbir Singh. Building a
Robust Linux kernel piggybacking The Linux
Test Project. In Linux Symposium, volume 2,
pages 91–100, 2008.

[9] Alexander Ufimtsev and Liam Murphy.
Automatic System for Linux Kernel Performance
Testing. In Linux Symposium, volume 2, pages
403–408, 2006.

[10] Hiro Yoshioka. Regression Test Framework and
Kernel Execution Coverage. In Linux Symposium,
volume 2, pages 285–296, 2007.

10


